Bienvenue chez nous !
Logo Ex Libris
 Laissez-vous inspirer ! 

Spatial Agent-Based Simulation Modeling in Public Health

  • eBook (epub)
  • 320 Nombre de pages
(0) Donner la première évaluation
Évaluations
(0)
(0)
(0)
(0)
(0)
Afficher toutes les évaluations
Presents an overview of the complex biological systems used within a global public health setting and features a focus on malaria ... Lire la suite
Lisez confortablement vos ebooks dans l’appli gratuite Ex Libris Reader. Vous obtiendrez ici votre lien de téléchargement.
CHF 99.00
Download est disponible immédiatement
Informations sur les eBooks
Les eBooks conviennent également aux appareils mobiles (voir les instructions).
Les eBooks d'Ex Libris sont protégés contre la copie par ADOBE DRM: apprenez-en plus.
Pour plus d'informations, cliquez ici.
Commande avec livraison dans une succursale

Description

Presents an overview of the complex biological systems used within a global public health setting and features a focus on malaria analysis

Bridging the gap between agent-based modeling and simulation (ABMS) and geographic information systems (GIS), Spatial Agent-Based Simulation Modeling in Public Health: Design, Implementation, and Applications for Malaria Epidemiology provides a useful introduction to the development of agent-based models (ABMs) by following a conceptual and biological core model of Anopheles gambiae for malaria epidemiology. Using spatial ABMs, the book includes mosquito (vector) control interventions and GIS as two example applications of ABMs, as well as a brief description of epidemiology modeling. In addition, the authors discuss how to most effectively integrate spatial ABMs with a GIS. The book concludes with a combination of knowledge from entomological, epidemiological, simulation-based, and geo-spatial domains in order to identify and analyze relationships between various transmission variables of the disease.

Spatial Agent-Based Simulation Modeling in Public Health: Design, Implementation, and Applications for Malaria Epidemiology also features:

  • Location-specific mosquito abundance maps that play an important role in malaria control activities by guiding future resource allocation for malaria control and identifying hotspots for further investigation
  • Discussions on the best modeling practices in an effort to achieve improved efficacy, cost-effectiveness, ecological soundness, and sustainability of vector control for malaria
  • An overview of the various ABMs, GIS, and spatial statistical methods used in entomological and epidemiological studies, as well as the model malaria study
  • A companion website with computer source code and flowcharts of the spatial ABM and a landscape generator tool that can simulate landscapes with varying spatial heterogeneity of different types of resources including aquatic habitats and houses

Spatial Agent-Based Simulation Modeling in Public Health: Design, Implementation, and Applications for Malaria Epidemiology is an excellent reference for professionals such as modeling and simulation experts, GIS experts, spatial analysts, mathematicians, statisticians, epidemiologists, health policy makers, as well as researchers and scientists who use, manage, or analyze infectious disease data and/or infectious disease-related projects. The book is also ideal for graduate-level courses in modeling and simulation, bioinformatics, biostatistics, public health and policy, and epidemiology.



Auteur

S. M. Niaz Arifin, PhD, is Research Assistant Professor in the Department of Computer Science and Engineering at the University of Notre Dame. A member of The Society for Computer Simulation and American Society of Tropical Medicine and Hygiene and the recipient of The American Society of Tropical Medicine and Hygiene Travel Award in 2011, his research interests include agent-based modeling and simulation, public health, data warehousing, and geographic information systems.

Gregory R. Madey, PhD, is Research Professor in the Department of Computer Science and Engineering at the University of Notre Dame. A member of The Society for Computer Simulation, Institute of Electrical and Electronics Engineers Computer Society, and American Society of Tropical Medicine and Hygiene, his research interests include agent-based modeling and simulation, cyberinfrastructure, bioinformatics, biocomplexity, e-Technologies, open source software, disaster management, and health informatics.

Frank H. Collins, PhD, is Professor in the Department of Biological Sciences at the University of Notre Dame. His research interests include genome level studies of arthropod vectors of human pathogens, the biology of malaria vectors with a focus on the development of molecular tools that will permit better resolution of questions about vector population ecology, ecological genetics, and the epidemiology of malaria transmission.



Contenu

List of Contributors xv

List of Figures xvii

List of Tables xxi

Preface xxiii

Acknowledgements xxix

List of Abbreviations xxxi

1 Introduction 1

1.1 Overview 1

1.2 Malaria 3

1.3 Agent-Based Modeling of Malaria 4

1.4 Contributions 4

1.5 Organization 5

2 Malaria: A Brief History 7

2.1 Overview 7

2.2 Malaria in Human History 7

2.2.1 The Malarial Path: Ancient Origins 8

2.2.2 Naming and Key Discoveries 9

2.2.3 Antimalarial Drugs 9

2.2.4 Prevention Measures 10

2.3 Malaria Epidemiology: A Global View 10

2.3.1 The Malaria Parasite 11

2.3.2 Geographic Distribution 12

2.3.3 Types of Transmission 12

2.3.4 Risk Mapping and Forecasting 13

2.4 Malaria Control 13

3 Agent-Based Modeling and Malaria 17

3.1 Overview 17

3.2 Agent-Based Models (ABMs) 17

3.2.1 Agents 18

3.2.2 Environment 19

3.2.3 Rules 20

3.2.4 Software for ABMs 20

3.3 History and Applications 21

3.3.1 M&S Organizations 21

3.4 Advantages of ABMs 23

3.4.1 Emergence, Aggregation, and Complexity 23

3.4.2 Heterogeneity 24

3.4.3 Learning and Adaptation 24

3.4.4 Flexibility in System Description 24

3.4.5 Inclusion of Multiple Spaces 25

3.4.6 Limitations of ABMs 25

3.4.7 ABMs vs Mathematical Models 27

3.4.8 Applicability of ABMs for Malaria Modeling 28

3.5 Malaria Models: A Review 29

3.5.1 Mathematical Models of Malaria 30

3.5.2 Agent-Based Models (ABMs) of Malaria 33

3.5.3 The Spatial Dimension of Malaria Models 35

3.6 Summary 36

4 The Biological Core Model 39

4.1 Overview 39

4.1.1 Relevant Terms of Interest 40

4.2 The Aquatic Phase 41

4.2.1 Egg (E) 42

4.2.2 Larva (L) 43

4.2.3 Pupa (P) 45

4.3 The Adult Phase 46

4.3.1 Immature Adult (IA) 46

4.3.2 Mate Seeking (MS) 47

4.3.3 Blood Meal Seeking (BMS) 47

4.3.4 Blood Meal Digesting (BMD) 47

4.3.5 Gravid (G) 47

4.4 Aquatic Habitats and Oviposition 48

4.4.1 Aquatic Habitats 48

4.4.2 Oviposition 48

4.5 Senescence and Mortality Rates 50

4.5.1 Senescence 50

4.5.2 Mortality Models: Basic Mathematical Formulation 51

4.6 Mortality in the Core Model 51

4.6.1 Aquatic (Immature) Mortality Rates 52

4.6.2 Adult Mortality Rates 53

4.7 Discussion 53

4.7.1 An Extendible Framework for Other Anopheline Species 53

4.7.2 Weather, Seasonality, and Other Factors 54

4.7.3 Mortality Rates 54

4.8 Summary 54

5 The Agent-Based Model (ABM) 57

5.1 Overview 57

5.2 Model Architecture 58

5.2.1 Object-Oriented Programming (OOP) Terminology 58

5.2.2 Agents 60

5.2.3 Environments 62

5.2.4 Event-Action-List Diagram 62

5.3 Mosquito Population Dynamics 64

5.4 Model Features 66

5.4.1 Processing Steps Ordering 66

5.4.2 Model Assumptions 67

5.4.3 Simulations 69

5.5 Summary 69

6 The Spatial ABM 71

6.1 Overview 71

6.2 The Spatial ABM 74

6.2.1 Definition of Terms 74

6.2.2 Landscapes 75

6.2.3 Landscape Generator Tools 76

6.3 Resource Clustering 79

6.4 Flight Heuristics for Mosquito Agents 81

6.5 Simulation Results 85

6.5.1 Model Verification 85

6.5.2 Landscape Patterns 86

6.5.3 Relative Sizes of Resources 87

6.5.4 Resource Density 88

6.5.5 Combined Habitat Ca...

Informations sur le produit

Titre: Spatial Agent-Based Simulation Modeling in Public Health
Sous-titre: Design, Implementation, and Applications for Malaria Epidemiology
Auteur:
Code EAN: 9781118964361
ISBN: 978-1-118-96436-1
Protection contre la copie numérique: Adobe DRM
Format: eBook (epub)
Editeur: Wiley
Genre: Théorie des probabilités, stochastique, statistiques mathématiques
nombre de pages: 320
Parution: 29.03.2016
Année: 2016
Sous-titre: Englisch
Taille de fichier: 23.5 MB