Bienvenue chez nous!
Logo Ex Libris

Sparse and Redundant Representations

  • Livre Relié
  • 376 Nombre de pages
(0) Donner la première évaluation
Afficher toutes les évaluations
This book introduces sparse and redundant representations with a focus on applications in signal and image processing. It details ... Lire la suite
CHF 86.00
Habituellement expédié sous 4 à 5 jours ouvrés.


This book introduces sparse and redundant representations with a focus on applications in signal and image processing. It details mathematical modeling for signal sources along with how to use the model for tasks such as denoising, restoration and separation.

A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham's razor: "Entities should not be multiplied without neces sity. " This principle enabled scientists to select the "best" physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage"spoken"whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the "language" or "dictionary" used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you'll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.

Michael Elad has been working at The Technion in Haifa, Israel, since 2003 and is currently an Associate Professor. He is one of the leaders in the field of sparse representations. He does prolific research in mathematical signal processing with more than 60 publications in top ranked journals. He is very well recognized and respected in the scientific community.

Texte du rabat
The field of sparse and redundant representation modeling has gone through a major revolution in the past two decades. This started with a series of algorithms for approximating the sparsest solutions of linear systems of equations, later to be followed by surprising theoretical results that guarantee these algorithms' performance. With these contributions in place, major barriers in making this model practical and applicable were removed, and sparsity and redundancy became central, leading to state-of-the-art results in various disciplines. One of the main beneficiaries of this progress is the field of image processing, where this model has been shown to lead to unprecedented performance in various applications.
This book provides a comprehensive view of the topic of sparse and redundant representation modeling, and its use in signal and image processing. It offers a systematic and ordered exposure to the theoretical foundations of this data model, the numerical aspects of the involved algorithms, and the signal and image processing applications that benefit from these advancements. The book is well-written, presenting clearly the flow of the ideas that brought this field of research to its current achievements. It avoids a succession of theorems and proofs by providing an informal description of the analysis goals and building this way the path to the proofs. The applications described help the reader to better understand advanced and up-to-date concepts in signal and image processing.
Written as a text-book for a graduate course for engineering students, this book can also be used as an easy entry point for readers interested in stepping into this field, and for others already active in this area that are interested in expanding their understanding and knowledge.
The book is accompanied by a Matlab software package that reproduces most of the results demonstrated in the book. A link to the free software is available on

Preface.- Part I. Theoretical and Numerical Foundations.- 1. Introduction.- 2. Uniqueness and Uncertainty.- 3. Pursuit Algorithms - Practice.- 4. Pursuit Algorithms - Guarantees.- 5. From Exact to Approximate Solution.- 6. Iterated Shrinkage Algorithms.- 7.Towards Average Performance Analysis.- 8. The Danzig Selector Algorithm.- Part II. Signal and Image Processing Applications.- 9. Sparsity-Seeking Methods in Signal Processing.- 10. Image Deblurring - A Case Study.- 11. MAP versus MMSE Estimation.- 12. The Quest For a Dictionary.- 13. Image Compression - Facial Images.- 14. Image Denoising.- 15. Other Applications.- 16. Concluding Remarks.- Bibliography.- Index

Informations sur le produit

Titre: Sparse and Redundant Representations
Sous-titre: From Theory to Applications in Signal and Image Processing
Code EAN: 9781441970107
ISBN: 144197010X
Format: Livre Relié
Genre: Mathématique
nombre de pages: 376
Poids: 799g
Taille: H241mm x B163mm x T32mm
Parution: 01.09.2010
Année: 2010
Pays: US


Vue d’ensemble

Mes évaluations

Évaluez cet article