Bienvenue chez nous!
Logo Ex Libris

Probability & Statistics with R for Engineers and Scientists

  • Couverture cartonnée
  • 528 Nombre de pages
(0) Donner la première évaluation
Afficher toutes les évaluations
Michael G. Akritas has been teaching Statistics at Penn State University since 1985. He is the author of approximately 100 researc... Lire la suite
CHF 186.10
Habituellement expédié sous 2 à 3 semaines.



Michael G. Akritas has been teaching Statistics at Penn State University since 1985. He is the author of approximately 100 research publications dealing with a wide range of statistical topics. He has supervised 18 Ph.D. and 12 M.Sc. students and is currently supervising three Ph.D. students. He is co-Founder of the International Society for Nonparametric Statistics, former Director of the National Statistical Consulting Center for Astronomy and co-Editor of the Journal of Nonparametric Statistics. He held a three year affiliation with the National Technical University of Athens, and visiting appointments at MIT, Texas A&M University, University of Pennsylvania, University of Göttingen, University of Cyprus, Australian National University, and UNICAMP. He has been an elected Fellow of the Institute of Mathematical Statistics and of the American Statistical Association since 2001.


This text grew out of the author’s notes for a course that he has taught for many years to a diverse group of undergraduates. The early introduction to the major concepts of the course engages students immediately, which helps them see the big picture, and sets an appropriate tone. In subsequent chapters, these topics are revisited, developed, and formalized, but the early introduction helps students build a true understanding of the concepts. The text utilizes the statistical software R, which is both widely used and freely available (thanks to the Free Software Foundation). However, in contrast with other books for the intended audience, this book by Akritas emphasizes not only the interpretation of software output, but also the generation of this output. Applications are diverse and relevant, and come from a variety of fields.



1. Basic Statistical Concepts

1.1 Why Statistics?

1.2 Populations and Samples

   1.2.1 Exercises 

1.3 Some Sampling Concepts

   1.3.1 Representative Samples 

   1.3.2 Simple Random Sampling, and Stratied Sampling 

   1.3.3 Sampling With and Without Replacement

   1.3.4 Non-representative Sampling

   1.3.5 Exercises 

1.4 Random Variables and Statistical Populations

   1.4.1 Exercises 

1.5 Basic Graphics for Data Visualization 

   1.5.1 Histograms and Stem and Leaf Plots

   1.5.2 Scatterplots

   1.5.3 Pie Charts and Bar Graphs 

   1.5.4 Exercises 

1.6 Proportions, Averages and Variances

   1.6.1 Population Proportion and Sample Proportion  

   1.6.2 Population Average and Sample Average

   1.6.3 Population Variance and Sample Variance

   1.6.4 Exercises 

1.7 Medians, Percentiles and Box Plots

   1.7.1 Exercises 

1.8 Comparative Studies 

   1.8.1 Basic Concepts and Comparative Graphics   

   1.8.2 Lurking Variables and Simpson’s Paradox

   1.8.3 Causation: Experiments and Observational Studies

   1.8.4 Factorial Experiments: Main Eects and Interactions   

   1.8.5 Exercises 

1.9 The Role of Probability 

1.10 Approaches to Statistical Inference


2. Introduction to Probability

2.1 Overview 

2.2 Sample Spaces, Events and Set Operations  

   2.2.1 Exercises 

2.3 Experiments with Equally Likely Outcomes  

   2.3.1 Denition and Interpretation of Probability   

   2.3.2 Counting Techniques 

   2.3.3 Probability Mass Functions and Simulations   

   2.3.4 Exercises 

2.4 Axioms and Properties of Probabilities 

   2.4.1 Exercises  

2.5 Conditional Probability  

   2.5.1 The Multiplication Rule and Tree Diagrams 

   2.5.2 Law of Total Probability and Bayes Theorem

   2.5.3 Exercises  

2.6 Independent Events  

   2.6.1 Applications to System Reliability  

   2.6.2 Exercises


3. Random Variables and Their Distributions 

3.1 Introduction.

3.2 Describing a Probability Distribution. 

   3.2.1 Random Variables, Revisited 

   3.2.2 The Cumulative Distribution Function  

   3.2.3 The Density Function of a Continuous Distribution   

   3.2.4 Exercises

3.3 Parameters of Probability Distributions

   3.3.1 Expected Value 

   3.3.2 Variance and Standard Deviation 

   3.3.3 Population Percentiles 

   3.3.4 Exercises  

3.4 Models for Discrete Random Variables  

   3.4.1 The Bernoulli and Binomial Distributions  

   3.4.2 The Hypergeometric Distribution. 

   3.4.3 The Geometric and Negative Binomial Distributions  

   3.4.4 The Poisson Distribution 

   3.4.5 Exercises  

3.5 Models for Continuous Random Variables

   3.5.1 The Exponential Distribution 

   3.5.2 The Normal Distribution 

   3.5.3 The Q-Q Plot 

   3.5.4 Exercises


4. Jointly Distributed Random Variables 

4.1 Introduction. 

4.2 Describing Joint Probability Distributions

   4.2.1 The Joint and Marginal PMF 

   4.2.2 The Joint and Marginal PDF 

   4.2.3 Exercises  

4.3 Conditional Distributions 

   4.3.1 Conditional Probability Mass Functions  

   4.3.2 Conditional Probability Density Functions  

   4.3.3 The Regression Function 

   4.3.4 Independence  

   4.3.5 Exercises  

4.4 Mean Value of Functions of Random Variables  

   4.4.1 The Basic Result  

   4.4.2 Expected Value of Sums  

   4.4.3 The Covariance and the Variance of Sums  

   4.4.4 Exercises  

4.5 Quantifying Dependence  

   4.5.1 Positive and Negative Dependence  

   4.5.2 Pearson’s (or Linear) Correlation Coefficient   

   4.5.3 Exercises  

4.6 Models for Joint Distributions. 

   4.6.1 Hierarchical Models  

   4.6.2 Regression Models 

   4.6.3 The Bivariate Normal Distribution  

   4.6.4 The Multinomial Distribution 

   4.6.5 Exercises


5. Some Approximation Results 

5.1 Introduction 

5.2 The LLN and the Consistency of Averages   

   5.2.1 Exercises  

5.3 Convolutions  

   5.3.1 What They Are and How They Are Used  

   5.3.2 The Distribution of[X bar]in The Normal Case 

   5.3.3 Exercises  

5.4 The Central Limit Theorem  

   5.4.1 The DeMoivre-Laplace Theorem 

   5.4.2 Exercises  


6. Fitting Models to Data 

6.1 Introduction. 

6.2 Some Estimation Concepts  

   6.2.1 Unbiased Estimation  

   6.2.2 Model-Freevs Model-Based Estimation  

   6.2.3 Exercises  

6.3 Methods for Fitting Models to Data 

   6.3.1 The Method of Moments 

   6.3.2 The Method of Maximum Likelihood  

   6.3.3 The Method of Least Squares 

   6.3.4 Exercises  

6.4 Comparing Estimators: The MSE Criterion   

   6.4.1 Exercises


7. Condence and Prediction Intervals 

7.1 Introduction to Condence Intervals 

   7.1.1 Construction of Condence Intervals   

   7.1.2 Z Condence Intervals 

   7.1.3 The T Distribution and T Condence Intervals 

   7.1.4 Outline of the Chapter 

7.2 CI Semantics: The Meaning of “Condence”   

7.3 Types of Condence Intervals 

   7.3.1 T CIs for the Mean. 

   7.3.2 Z CIs for Proportions 

   7.3.3 T CIs for the Regression Parameters 

   7.3.4 The Sign CI for the Median  

   7.3.5 Chi-Square CIs for the Normal Variance and Standard Deviation

   7.3.6 Exercises  

7.4 The Issue of Precision 

   7.4.1 Exercises  

7.5 Prediction Intervals 

   7.5.1 Basic Concepts 

   7.5.2 Prediction of a Normal Random Variable  

   7.5.3 Prediction in Normal Simple Linear Regression   

   7.5.4 Exercises


8. Testing of Hypotheses 

8.1 Introduction. 

8.2 Setting up a Test Procedure 

   8.2.1 The Null and Alternative Hypotheses   

   8.2.2 Test Statistics and Rejection Rules  

   8.2.3 Z Tests and T Tests  

   8.2.4 P -Values  

   8.2.5 Exercises  

8.3 Types of Tests 

   8.3.1 T Tests for the Mean 

   8.3.2 Z Tests for Proportions  

   8.3.3 T Tests about the Regression Parameters  

   8.3.4 The ANOVA F Test in Regression

   8.3.5 The Sign Test for the Median 

   8.3.6 Chi-SquareTests for a Normal Variance  

   8.3.7 Exercises  

8.4 Precision in Hypothesis Testing  

   8.4.1 Type I and Type II Errors 

   8.4.2 Power and Sample Size Calculations 

   8.4.3 Exercises  


9. Comparing Two Populations 

9.1 Introduction. 

9.2 Two-Sample Tests and CIs for Means  

   9.2.1 Some Basic Results

   9.2.2 Condence Intervals  

   9.2.3 Hypothesis Testing 

   9.2.4 Exercises  

9.3 The Rank-Sum Test Procedure  

   9.3.1 Exercises  

9.4 Comparing Two Variances 

   9.4.1 Levene’s Test  

   9.4.2 The F Test under Normality 

   9.4.3 Exercises  

9.5 Paired Data 

   9.5.1 Denition and Examples of Paired Data  

   9.5.2 The Paired Data T Test  

   9.5.3 The Paired T Test for Proportions  

   9.5.4 The Wilcox on Signed-Rank Test 

   9.5.5 Exercises  


10. Comparing k(> 2) Populations

10.1 Introduction 

10.2 Types of k-Sample Tests  

   10.2.1 The ANOVA F Test for Means  

   10.2.2 The Kruskal-Wallis Test  

   10.2.3 The Chi-Square Test for Proportions 

   10.2.4 Exercises  

10.3 Simultaneous CIs and Multiple Comparisons   

   10.3.1 Bonferroni Multiple Comparisons and Simultaneous CIs

   10.3.2 Tukey’s Multiple Comparisons and Simultaneous CIs  

   10.3.3 Tukey’s Multiple Comparisons on the Ranks

   10.3.4 Exercises  

10.4 Randomized Block Designs  

   10.4.1 The Statistical Model and Hypothesis   

   10.4.2 The ANOVA F Test  

   10.4.3 Friedman’s Test and F Test on the Ranks  

   10.4.4 Multiple Comparisons

   10.4.5 Exercises


11. Multifactor Experiments 

11.1 Introduction. 

11.2 Two-Factor Designs  

   11.2.1 F Tests for Main Effects and Interactions  

   11.2.2 Testing the Validity of Assumptions   

   11.2.3 One Observation per Cell  

   11.2.4 Exercises

11.3 Three-Factor Designs 

   11.3.1 Exercises  

11.4 2r Factorial Experiments 

   11.4.1 Blocking and Confounding

   11.4.2 Fractional Factorial Designs  

11.4.3 Exercises


12. Polynomial and Multiple Regression 

12.1 Introduction. 

12.2 The Multiple Linear Regression Model   

   12.2.1 Exercises  

12.3 Estimation Testing and Prediction  

   12.3.1 The Least Squares Estimators 

   12.3.2 Model Utility Test 

   12.3.3 Testing the Significance of Regression Coefficients  

   12.3.4 Condence Intervals and Prediction   

   12.3.5 Exercises

12.4 Additional Topics 

   12.4.1 Weighted Least Squares  

   12.4.2 Applications to Factorial Designs 

   12.4.3 Variable Selection 

   12.4.4 Inuential Observations  

   12.4.5 Multicolinearity 

   12.4.6 Logistic Regression 

   12.4.7 Exercises  


13. Statistical Process Control 

13.1 Introduction and Overview  

13.2 The [X bar] Chart  

   13.2.1  [X bar] Chart with Known Target Values 

   13.2.2  [X bar] Chart with Estimated Target Values 

   13.2.3 The [X bar] Chart  

   13.2.4 Average Run Length, and Supplemental Rules

   13.2.5 Exercises  

13.3 The S and R Charts 

   13.3.1 Exercises  

13.4 The p and c Charts 

   13.4.1 The p Chart  

   13.4.2 The c Chart 

   13.4.3 Exercises  

13.5 CUSUM and EWMA Charts 

   13.5.1 The CUSUM Chart  

   13.5.2 The EWMA Chart 

   13.5.3 Exercises  


A. Tables 

B. Answers To Selected Exercises 




Informations sur le produit

Titre: Probability & Statistics with R for Engineers and Scientists
Code EAN: 9780321852991
ISBN: 978-0-321-85299-1
Format: Couverture cartonnée
Editeur: Pearson Academic
Genre: Mathématique
nombre de pages: 528
Année: 2015


Vue d’ensemble

Mes évaluations

Évaluez cet article