Bienvenue chez nous !
Logo Ex Libris
 Laissez-vous inspirer ! 

Unsupervised Learning in Space and Time

  • Livre Relié
  • 324 Nombre de pages
(0) Donner la première évaluation
Afficher toutes les évaluations
This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervi... Lire la suite
165.00 CHF 132.00
Impression sur demande - l'exemplaire sera recherché pour vous.
Pas de droit de retour !
Commande avec livraison dans une succursale


This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field.

Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts.

Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way.

Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.

Offers a novel approach to unsupervised learning, which connects seemingly disparate problems in the domain through unified mathematical formulations and efficient optimization algorithms

Explains, in a concise and detailed manner, how to solve specific and highly relevant tasks in computer vision and machine learning

Provides useful practical guidance and insights on unsupervised learning problems, in addition to a solid theoretical justification for each algorithm presented


Dr. Marius Leordeanu is an Associate Professor (Senior Lecturer) at the Computer Science & Engineering Department, Polytechnic University of Bucharest and a Senior Researcher at the Institute of Mathematics of the Romanian Academy (IMAR), Bucharest, Romania. In 2014, he was awarded the Grigore Moisil Prize, the most prestigious award in mathematics bestowed by the Romanian Academy, for his work on unsupervised learning.


1. Unsupervised Visual Learning: from Pixels to Seeing.- 2. Unsupervised Learning of Graph and Hypergraph Matching.- 3. Unsupervised Learning of Graph and Hypergraph Clustering.- 4. Feature Selection meets Unsupervised Learning.- 5. Unsupervised Learning of Object Segmentation in Video with Highly Probable Positive Features.- 6. Coupling Appearance and Motion: Unsupervised Clustering for Object Segmentation through Space and Time.- 7. Unsupervised Learning in Space and Time over Several Generations of Teacher and Student Networks.- 8. Unsupervised Learning Towards the Future.

Informations sur le produit

Titre: Unsupervised Learning in Space and Time
Code EAN: 9783030421274
ISBN: 3030421279
Format: Livre Relié
Editeur: Springer International Publishing
Genre: Logiciels utilisateurs
nombre de pages: 324
Poids: 653g
Taille: H241mm x B160mm x T23mm
Année: 2020
Auflage: 1st ed. 2020

Autres articles de cette série  "Advances in Computer Vision and Pattern Recognition"