Bienvenue chez nous !
Logo Ex Libris
 Laissez-vous inspirer ! 

Clinical MR Imaging and Physics

  • Couverture cartonnée
  • 176 Nombre de pages
(0) Donner la première évaluation
Évaluations
(0)
(0)
(0)
(0)
(0)
Afficher toutes les évaluations
Keywords Spin Electromagnetic radiation Resonance Nucleus Hydrogen Proton Certain atomic nuclei possess inherent magnetic Le... Lire la suite
CHF 122.00
Habituellement expédié sous 2 à 4 jours ouvrés.
Commande avec livraison dans une succursale

Description

Keywords Spin Electromagnetic radiation Resonance Nucleus Hydrogen Proton Certain atomic nuclei possess inherent magnetic Let us summarize the MRI procedure. Te patient properties called spin, and can interact with electro- is placed in a magnetic feld and becomes temporarily 1 magnetic (EM) radiation through a process called magnetized. Resonance is achieved through the - resonance. When such nuclei absorb EM energy they plication of specifc pulses of EM radiation, which is proceed to an excited, unstable confguration. Upon absorbed by the patient. Subsequently, the excess - return to equilibrium, the excess energy is released, ergy is liberated and measured. Te captured signal producing the MR signal. Tese processes are not is processed by a computer and converted to a gray random, but obey predefned rules. scale (MR) image. Te simplest nucleus is that of hydrogen (H), con- Why do we need to place the patient in a m- sisting of only one particle, a proton. Because of its net? Because the earth's magnetic feld is too weak to abundance in humans and its strong MR signal, H be clinically useful; it varies from 0. 30. 7 Gauss (G). is the most useful nucleus for clinical MRI. Tus, foC r urrent clinical MR systems operate at low, mid or our purposes, MRI refers to MRI of hydrogen, and for h igh feld strength ranging from 0. 1 to 3.

Clear, direct and succint description of the Physics of Magnetic Resonance

Description of the practical aspects of MR Imaging in a unique way, that has not been seen before



Texte du rabat

Keywords Spin > Electromagnetic radiation > Resonance > Nucleus > Hydrogen > Proton > Certain atomic nuclei possess inherent magnetic Let us summarize the MRI procedure. Te patient properties called spin, and can interact with electro- is placed in a magnetic feld and becomes temporarily 1 magnetic (EM) radiation through a process called magnetized. Resonance is achieved through the - resonance. When such nuclei absorb EM energy they plication of specifc pulses of EM radiation, which is proceed to an excited, unstable confguration. Upon absorbed by the patient. Subsequently, the excess - return to equilibrium, the excess energy is released, ergy is liberated and measured. Te captured signal producing the MR signal. Tese processes are not is processed by a computer and converted to a gray random, but obey predefned rules. scale (MR) image. Te simplest nucleus is that of hydrogen (H), con- Why do we need to place the patient in a m- sisting of only one particle, a proton. Because of its net? Because the earth's magnetic feld is too weak to abundance in humans and its strong MR signal, H be clinically useful; it varies from 0. 3-0. 7 Gauss (G). is the most useful nucleus for clinical MRI. Tus, foC r urrent clinical MR systems operate at low, mid or our purposes, MRI refers to MRI of hydrogen, and for h igh feld strength ranging from 0. 1 to 3.



Contenu
Resonance.- Electromagnetic Fields.- Macroscopic Magnetization.- Macroscopic Magnetization Revisited.- Excitation Phenomena.- T1 Relaxation (Longitudinal or Spin-Lattice Relaxation).- T2 Relaxation (Transverse or SpinSpin Relaxation).- Magnetic Substrates of T1 Relaxation.- Magnetic Substrates of T2 Relaxation.- Proton (Spin) Density Contrast.- Partial Saturation.- Free Induction Decay.- Spin Echo.- Integration of T1, T2, and Proton Density Phenomena.- Inversion Recovery.- Image Formation Fourier Transform Gradients.- Gradient Echo Imaging.- Pulse Sequences.- Fast or Turbo Spin Echo Imaging.- Selective Fat Suppression.- Chemical Shift Imaging.- Magnetization Transfer Contrast.- Diffusion.- Artifacts.- Noise.- Imaging Time.- Resolution.- Contrast Agents.- Blood Flow.- MR Angiography.- Basics of MR Examinations and Interpretation.

Informations sur le produit

Titre: Clinical MR Imaging and Physics
Auteur:
Code EAN: 9783540779995
ISBN: 354077999X
Format: Couverture cartonnée
Editeur: Springer-Verlag GmbH
Genre: Médecine
nombre de pages: 176
Poids: 453g
Taille: H276mm x B203mm x T10mm
Année: 2008
Auflage: 2009