Bienvenue chez nous !
Logo Ex Libris
 Laissez-vous inspirer ! 

Developable Surface

  • Couverture cartonnée
  • 68 Nombre de pages
(0) Donner la première évaluation
Évaluations
(0)
(0)
(0)
(0)
(0)
Afficher toutes les évaluations
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In... Lire la suite
CHF 31.70
Impression sur demande - l'exemplaire sera imprimé pour vous.
Pas de droit de retour !
Commande avec livraison dans une succursale

Description

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a developable surface is a surface with zero Gaussian curvature. That is, it is "surface" that can be flattened onto a plane without distortion (i.e. "stretching" or "compressing"). Conversely, it is a surface which can be made by transforming a plane (i.e. "folding", "bending", "rolling", "cutting" and/or "gluing"). In three dimensions all developable surfaces are ruled surfaces. There are developable surfaces in R4 which are not ruled.Foormally, in mathematics, a developable surface is a surface with zero Gaussian curvature. One consequence of this is that all "developable" surfaces embedded in 3D-space are ruled surfaces (though hyperboloids are examples of ruled surfaces which are not developable). Because of this, many developable surfaces can be visualised as the surface formed by moving a straight line in space. For example, a cone is formed by keeping one end-point of a line fixed whilst moving the other end-point in a circle.

Informations sur le produit

Titre: Developable Surface
Éditeur:
Code EAN: 9786131237638
Format: Couverture cartonnée
Editeur: Betascript Publishing
Genre: Mathématique
nombre de pages: 68
Poids: g
Taille: H220mm x B220mm