Geben Sie Ihre E-Mail-Adresse oder Handynummer ein und Sie erhalten einen direkten Link, um die kostenlose Reader-App herunterzuladen.
Die Ex Libris-Reader-App ist für iOS und Android erhältlich. Weitere Informationen zu unseren Apps finden Sie hier.
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available.
This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
Includes a brief introduction to mathematical programming, metaheuristic algorithms, and machine learning techniques
Presents a systematic description of most recent research advances in data-driven evolutionary optimization, including surrogate-assisted single-, multi-, and many-objective optimization
Introduces various intuitive and mathematical surrogate management strategies, such as the trust region method and acquisition functions in Bayesian optimization
Provides applications of data-driven optimization to engineering design, automation of process industry, health care, and automated machine learning
Titel: | Data-Driven Evolutionary Optimization |
Untertitel: | Integrating Evolutionary Computation, Machine Learning and Data Science |
Autor: | |
EAN: | 9783030746391 |
ISBN: | 3030746399 |
Format: | Fester Einband |
Herausgeber: | Springer International Publishing |
Genre: | Allgemeines & Lexika |
Anzahl Seiten: | 420 |
Gewicht: | 793g |
Größe: | H241mm x B160mm x T28mm |
Jahr: | 2021 |
Untertitel: | Englisch |
Auflage: | 1st ed. 2021 |
Sie haben bereits bei einem früheren Besuch Artikel in Ihren Warenkorb gelegt. Ihr Warenkorb wurde nun mit diesen Artikeln ergänzt. |