Willkommen, schön sind Sie da!
Logo Ex Libris

Theory, Numerics and Applications of Hyperbolic Problems I

  • Kartonierter Einband
  • 724 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbol... Weiterlesen
20%
264.00 CHF 211.20
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Presents a comprehensive overview of the field of hyperbolic partial differential equations

Discusses all aspects, from mathematical theory to practical applications

Includes articles by the top researchers in the field



Autorentext

Christian Klingenberg is a professor in the Department of Mathematics at Wuerzburg University, Germany.

Michael Westdickenberg is a professor at the Institute for Mathematics at RWTH Aachen University, Germany.



Inhalt

Chapter 1: Helmut Abels, Johannes Daube, Christiane Kraus and Dietmar Kröner: The Sharp-Interface Limit for the NavierStokesKorteweg Equations

Chapter 2: E. Abreu, A. Bustos and W. J. Lambert: Asymptotic behavior of a solution of relaxation system for ow in porous media

Chapter 3: Angelo Alessandri, Patrizia Bagnerini, Roberto Cianci, Mauro Gaggeroi: Optimal control of level sets generated by the normal flow equation

Chapter 4: Debora Amadori and Jinyeong Park: Emergent dynamics for the kinetic Kuramoto equation

Chapter 5: Matthieu Ancellin, Laurent Brosset and Jean-Michel Ghidaglia: A hyperbolic model of non-equilibrium phase change at a sharp liquid-vapor interface

Chapter 6: Paolo Antonelli, Michele D'Amico and Pierangelo Marcati: The Cauchy problem for the Maxwell-Schrodinger system with a power-type nonlinearity

Chapter 7: Denise Aregba-Driollet and Stephane Brull: Construction and approximation of the polyatomic bitemperature Euler system

Chapter 8: K. R. Arun, A. J. Das Gupta and S. Samantaray; An implicit-explicit scheme accurate at low Mach numbers for the wave equation system

Chapter 9: Joshua Ballew: Bose-Einstein Condensation and Global Dynamics of Solutions to a Hyperbolic Kompaneets Equation

Chapter 10: Andrea Barth and Ilja Kroker: Finite volume methods for hyperbolic partial differential equations with spatial noise

Chapter 11: Hubert Baty and Hiroaki Nishikawa: A hyperbolic approach for dissipative magnetohydrodynamics

Chapter 12: Jonas Berberich, Praveen Chandrashekar, Christian Klingenberg: A general well-balanced nite volume scheme for Euler equations with gravity

Chapter 13: Christophe Berthon, Raphal Loubre and Victor Michel-Dansac: A second-order well-balanced scheme for the shallow-water equations with topography

Chapter 14: Stefano Bianchini and Elio Marconi: A Lagrangian approach to scalar conservation laws

Chapter 15: Paolo Bonicatto: On uniqueness of weak solutions to transport equation with non-smooth velocity eld

Chapter 16: Sebastien Boyaval: Johnson-Segalman Saint-Venant equations for a 1D viscoelastic shallow ow in pure elastic limit

Chapter 17: Michael D. Bragin and Boris V. Rogov: On the Exact Dimensional Splitting for a Scalar Quasilinear Hyperbolic Conservation Law

Chapter 18: Yann Brenier: On the derivation of the Newtonian gravitation from the Brownian agrigation of a regular lattice

Chapter 19: Alberto Bressan: Trafc flow models on a network of roads

Chapter 20: A. Brunk, N. Kolbe, and N. Sfakianakis: Chemotaxis and haptotaxis on cellular level

Chapter 21: Pawel Buchmuller, Jurgen Dreher and Christiane Helzel: Improved accuracy of high-order WENO finite volume methods on Cartesian grids with adaptive mesh renement

Chapter 22: Pablo Castaneda: Explicit construction of effective ux functions for Riemann solutions

Chapter 23: Pierre Castelli, Pierre-Emmanuel Jabin, Stephane Junca: Fractional spaces and conservation laws

Chapter 24: Manuel J. Castro, José M. Gallardo and Antonio Marquina: Jacobian-free incomplete Riemann solvers

Chapter 25: Christophe Chalons, Jim Magiera, Christian Rohde and Maria Wiebe: A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow

Chapter 26: Praveen Chandrashekar and Jayesh Badwaik: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for 1-D Euler equations

Chapter 27: Praveen Chandrashekar, Juan Pablo Gallego-Valencia and Christian Klingenberg: A Runge-Kutta discontinuous Galerkin scheme for the ideal Magnetohydrodynamical model

Chapter 28: Alina Chertock, Michael Herty and Seyma NurOzcan: Well-Balanced central-upwind schemes for 2 × 2 systems of balance laws

Chapter 29: Cleopatra Christoforou and Athanasios Tzavaras: On the relative entropy method for hyperbolic-parabolic systems

Chapter 30: Rinaldo M. Colombo, Christian Klingenberg and Marie-Christine Meltzer: A multispecies traffic model based on the Lighthill-Whitham - Richards model

Chapter 31: Georges-Henri Cottet: Semi-Lagrangian particle methods for hyperbolic equations

Chapter 32: Clementine Courtes: Convergence for PDEs with an arbitrary odd order spatial derivative term

Chapter 33: Zihuan Dai: A cell-centered Lagrangian method for 2D ideal MHD equations

Chapter 34: Edda Dal Santo, Massimiliano D. Rosini and Nikodem Dymski: The Riemann problem for a general

Chapter 35: Andreas Dedner and Jan Giesselmann: Residual error indicators for dG schemes for discontinuous solutions to systems of conservation laws

Chapter 36: G. Deolmi, W. Dahmen, S. Müller, M. Albers, P.S. Meysonnat and W. Schroder: Effective Boundary Conditions for Turbulent Compressible Flows over a Riblet Surface

Chapter 37: Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini and Giovanni Russo: A deterministic particle approximation for non-linear conservation laws

Chapter 38: Elena Di Iorio, Pierangelo Marcati and Stefano Spirito: Splash singularity for a free-boundary incompressible viscoelastic uid model

Chapter 39: Herbert Egger and Thomas Kugler: An asymptotic preserving mixed nite element method for wave propagation in pipelines

Chapter 40: Volker Elling: Nonexistence of irrotational ow around solids with protruding corners

Chapter 41: Robin Flohr and Jens Rottmann-Matthes: A splitting approach for freezing waves

Chapter 42: Raffaele Folino: Metastability for hyperbolic variations of AllenCahn equation

Chapter 43: David Fridrich, Richard Liska and Burton Wendroff: Cell-centered Lagrangian Lax-Wendro HLL Hybrid Schemes in cylindrical geometry

Chapter 44: Anahit Galstian: Semilinear Shifted Wave Equation in the de Sitter Spacetime with Hyperbolic Spatial Part

Chapter 45: Sondre-Tesdal Galtung: Convergence Rates of a Fully Discrete Galerkin Scheme for the BenjaminOno Equation

Chapter 46: Nils Gerhard and Siegfried Müller: The simulation of a tsunami run-up using multiwavelet-based grid adaptation

Chapter 47: Christoph Gersbacher, Martin Nolte: Constrained Reconstruction in MUSCL-type Finite Volume Schemes

Chapter 48: Jan Giesselmann and Dimitrios Zacharenakis: A posteriori analysis for the Euler-Korteweg model

Chapter 49: Diogo Gomes, Levon Nurbekyan, and Marc Sedjro: Concervations laws arising in the study of forward-forward Mean-Field Games

Chapter 50: Martin Gugat, Michael Herty and Hui Yu: On the relaxation approximation for 2 × 2 hyperbolic balance laws

Chapter 51: Maren Hantke, Christoph Matern and Gerald Warnecke: Numerical solutions for a weakly hyperbolic dispersed two-phase ow model

Chapter 52: Maryse Hawerkamp, Dietmar Kröner, Hanna Moenius: Optimal controls in ux-, source- and initial terms for weakly coupled hyperbolic systems

Chapter 53: Michael Herty, Alexander Kurganov and Dmitry Kurochkin: On Convergence of Numerical Methods for Optimization Problems Governed by Scalar Hyperbolic Conservation Laws

Produktinformationen

Titel: Theory, Numerics and Applications of Hyperbolic Problems I
Untertitel: Aachen, Germany, August 2016
Editor:
EAN: 9783030082727
ISBN: 3030082725
Format: Kartonierter Einband
Herausgeber: Springer International Publishing
Genre: Mathematik
Anzahl Seiten: 724
Gewicht: 1077g
Größe: H235mm x B155mm x T38mm
Jahr: 2019
Auflage: Softcover reprint of the original 1st ed. 2018

Weitere Produkte aus der Reihe "Springer Proceedings in Mathematics & Statistics"