Willkommen, schön sind Sie da!
Logo Ex Libris

Comparison of Various Segmentation Techniques in Iris Recognition

  • Kartonierter Einband
  • 116 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Iris recognition is regarded as the most reliable and accurate biometric identification system available. Iris recognition system ... Weiterlesen
20%
50.95 CHF 40.75
Sie sparen CHF 10.20
Print on Demand - Exemplar wird für Sie gedruckt.
Kein Rückgaberecht!
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Iris recognition is regarded as the most reliable and accurate biometric identification system available. Iris recognition system captures an image of an individual s eye, the iris in the image is then segmented and normalized for feature extraction process. The performance of iris recognition systems highly depends on segmentation. Segmentation is used to locate the correct iris region in an eye and it should be done accurately and correctly to remove the eyelids, eyelashes, reflection and pupil noises present in iris region.In our book we are comparing two segmentation methods namely, Daughman s algorithm and Hough Transform. Iris images are selected from the CASIA Database, then the iris and pupil boundary are detected from rest of the eye image, removing the noises.The segmented iris region was normalized to eliminate dimensional inconsistencies between iris regions by using Daugman s Rubber Sheet Model.A comparative analysis is made of the two methods to find out the better method.

Autorentext

Prateek Verma, completed Masters of Engineering (Gold Medalist) in VLSI Design from CSVTU, Bhilai. He has published research papers in International Journals and participated in various International Conferences. He has worked as Assistant System Engineer in Tata Consultancy Services and also worked as Asst. Professor in various Engineering college

Produktinformationen

Titel: Comparison of Various Segmentation Techniques in Iris Recognition
Untertitel: Case Study
Autor:
EAN: 9783659135972
ISBN: 978-3-659-13597-2
Format: Kartonierter Einband
Herausgeber: LAP Lambert Academic Publishing
Genre: Informatik
Anzahl Seiten: 116
Gewicht: 191g
Größe: H220mm x B150mm x T7mm
Jahr: 2012
Untertitel: Englisch
Auflage: Aufl.