Willkommen, schön sind Sie da!
Logo Ex Libris

Mining Data for Financial Applications

  • Kartonierter Einband
  • 144 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
This book constitutes revised selected papers from the 4th Workshop on Mining Data for Financial Applications, MIDAS 2019, held in... Weiterlesen
CHF 72.00
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

This book constitutes revised selected papers from the 4th Workshop on Mining Data for Financial Applications, MIDAS 2019, held in conjunction with ECML PKDD 2019, in Würzburg, Germany, in September 2019.

The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 16 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain.




Inhalt

MQLV: Optimal Policy of Money Management in Retail Banking with Q-Learning.- Curriculum Learning in Deep Neural Networks for Financial Forecasting.- Representation Learning in Graphs for Credit Card Fraud Detection.- Firms Default Prediction with Machine Learning.- Convolutional Neural Networks, Image Recognition and Financial Time Series Forecasting.- Mining Business Relationships from Stocks and News.- Mining Financial Risk Events from News and Assessing their impact on Stocks.- Monitoring the Business Cycle with Fine-grained, Aspect-based Sentiment Extraction from News.- Multi-step Prediction of Financial Asset Return Volatility Using Parsimonious Autoregressive Sequential Model.- Big Data Financial Sentiment Analysis in the European Bond Markets.- A Brand Scoring System for Cryptocurrencies Based on Social Media Data.

Produktinformationen

Titel: Mining Data for Financial Applications
Untertitel: 4th ECML PKDD Workshop, MIDAS 2019, Würzburg, Germany, September 16, 2019, Revised Selected Papers
Editor:
EAN: 9783030377199
ISBN: 3030377199
Format: Kartonierter Einband
Herausgeber: Springer International Publishing
Genre: Informatik
Anzahl Seiten: 144
Gewicht: 230g
Größe: H235mm x B155mm x T8mm
Jahr: 2020
Auflage: 1st ed. 2020

Weitere Produkte aus der Reihe "Lecture Notes in Computer Science"