Willkommen, schön sind Sie da!
Logo Ex Libris

Periodic Integral and Pseudodifferential Equations with Numerical Approximation

  • Kartonierter Einband
  • 468 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Classical boundary integral equations arising from the potential theory and acoustics (Laplace and Helmholtz equations) are derive... Weiterlesen
20%
192.00 CHF 153.60
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Classical boundary integral equations arising from the potential theory and acoustics (Laplace and Helmholtz equations) are derived. Using the parametrization of the boundary these equations take a form of periodic pseudodifferential equations. A general theory of periodic pseudodifferential equations and methods of solving are developed, including trigonometric Galerkin and collocation methods, their fully discrete versions with fast solvers, quadrature and spline based methods. The theory of periodic pseudodifferential operators is presented in details, with preliminaries (Fredholm operators, periodic distributions, periodic Sobolev spaces) and full proofs. This self-contained monograph can be used as a textbook by graduate/postgraduate students. It also contains a lot of carefully chosen exercises.

An attractive book in the intersection of analysis and numerical analysis



Inhalt
1 Preliminaries.- 2 Single Layer and Double Layer Potentials.- 3 Solution of Boundary Value Problems by Integral Equations.- 4 Singular Integral Equations.- 5 Boundary Integral Operators in Periodic Sobolev Spaces.- 6 Periodic Integral Equations.- 7 Periodic Pseudodifferential Operators.- 8 Trigonometric Interpolation.- 9 Galerkin Method and Fast Solvers.- 10 Trigonometric Collocation.- 11 Integral Equations on an Open Arc.- 12 Quadrature Methods.- 13 Spline Approximation Methods.

Produktinformationen

Titel: Periodic Integral and Pseudodifferential Equations with Numerical Approximation
Autor:
EAN: 9783642075384
ISBN: 364207538X
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Genre: Mathematik
Anzahl Seiten: 468
Gewicht: 703g
Größe: H235mm x B155mm x T25mm
Jahr: 2010
Auflage: Softcover reprint of hardcover 1st ed. 2002

Weitere Produkte aus der Reihe "Springer Monographs in Mathematics"