Willkommen, schön sind Sie da!
Logo Ex Libris

An Introduction to Statistical Learning

  • Fester Einband
  • 426 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Leseprobe
Informationen zum AutorGareth James is a professor of data sciences and operations at the University of Southern California. He h... Weiterlesen
CHF 86.00
Auslieferung erfolgt in der Regel innert 2 bis 4 Werktagen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Informationen zum Autor

Gareth James is a professor of data sciences and operations at the University of Southern California. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.

Daniela Witten is an associate professor of statistics and biostatistics at the University of Washington. Her research focuses largely on statistical machine learning in the high-dimensional setting, with an emphasis on unsupervised learning.

Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Â Â Â



Zusammenfassung
This book presents key modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering.



Data and statistics are an increasingly important part of modern life, and nearly everyone would be better off with a deeper understanding of the tools that help explain our world. Even if you don't want to become a data analystwhich happens to be one of the fastest-growing jobs out there, just so you knowthese books are invaluable guides to help explain what's going on. (Pocket, February 23, 2018)



Autorentext

Gareth James is a professor of data sciences and operations at the University of Southern California. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.

Daniela Witten is an associate professor of statistics and biostatistics at the University of Washington. Her research focuses largely on statistical machine learning in the high-dimensional setting, with an emphasis on unsupervised learning.


Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap.      



Klappentext

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.



Inhalt
Introduction.- Statistical Learning.- Linear Regression.- Classification.- Resampling Methods.- Linear Model Selection and Regularization.- Moving Beyond Linearity.- Tree-Based Methods.- Support Vector Machines.- Unsupervised Learning.- Index.

Produktinformationen

Titel: An Introduction to Statistical Learning
Untertitel: with Applications in R
Autor:
EAN: 9781461471370
ISBN: 1461471370
Format: Fester Einband
Genre: Mathematik
Anzahl Seiten: 426
Gewicht: 935g
Größe: H241mm x B159mm x T25mm
Jahr: 2017
Auflage: 1st ed. 2013, Corr. 7th printi
Land: US

Weitere Produkte aus der Reihe "Springer Texts in Statistics"