Willkommen, schön sind Sie da!
Logo Ex Libris

Positive Polynomials

  • Kartonierter Einband
  • 280 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Positivity is one of the most basic mathematical concepts. In many areas of mathematics (like analysis, real algebraic geometry, f... Weiterlesen
20%
115.00 CHF 92.00
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Positivity is one of the most basic mathematical concepts. In many areas of mathematics (like analysis, real algebraic geometry, functional analysis, etc.) it shows up as positivity of a polynomial on a certain subset of R^n which itself is often given by polynomial inequalities. The main objective of the book is to give useful characterizations of such polynomials. It takes as starting point Hilbert's 17th Problem from 1900 and explains how E. Artin's solution of that problem eventually led to the development of real algebra towards the end of the 20th century. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed. Thus the monograph can also serve as the basis for a 2-semester course in real algebra.

From the reviews of the first edition:

"This is a nicely written introduction to 'reality' and 'positivity' in rings, and besides students and researchers it can also be interesting for anyone who would like to learn more on positivity and orderings." (Vilmos Totik, Acta Scientiarum Mathematicarum, Vol. 68, 2002)

"A book on 'real algebra' that serves as an introduction to the subject in addition to the main theme of the text. Well written with exercises for every chapter." (ASLIB Book Guide, Vol. 66 (11), 2001)



Inhalt
1. Real Fields.- 2. Semialgebraic Sets.- 3. Quadratic Forms over Real Fields.- 4. Real Rings.- 5. Archimedean Rings.- 6. Positive Polynomials on Semialgebraic Sets.- 7. Sums of 2mth Powers.- 8. Bounds.- Appendix: Valued Fields.- A.1 Valuations.- A.2 Algebraic Extensions.- A.3 Henselian Fields.- A.4 Complete Fields.- A.5 Dependence and Composition of Valuations.- A.6 Transcendental Extensions.- A.7 Exercises.- A.8 Bibliographical Comments.- References.- Glossary of Notations.

Produktinformationen

Titel: Positive Polynomials
Untertitel: From Hilbert's 17th Problem to Real Algebra
Autor:
EAN: 9783642074455
ISBN: 3642074456
Format: Kartonierter Einband
Herausgeber: Springer Berlin Heidelberg
Anzahl Seiten: 280
Gewicht: 429g
Größe: H235mm x B155mm x T15mm
Jahr: 2011
Auflage: Softcover reprint of the original 1st ed. 2001

Weitere Produkte aus der Reihe "Springer Monographs in Mathematics"