Willkommen, schön sind Sie da!
Logo Ex Libris

Robust Optimization of Spline Models and Complex Regulatory Networks

  • Kartonierter Einband
  • 152 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to ... Weiterlesen
CHF 130.00
Print on demand - Exemplar wird für Sie besorgt.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS - and robust (conic) generalized partial linear models - R(C)GPLM - under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.



Autorentext

Ayse Özmen has affiliation at Turkish Energy
Foundation(TENVA)and Institute of Applied Mathematics of Middle East Technical
University (METU), Ankara, Turkey. Her research is on OR, optimization, energy
modelling, renewable energy systems, network modelling, regulatory networks, data
mining. She received her Doctorate in Scientific Computing at Institute for
Applied Mathematics at METU.



Inhalt
Introduction.- Mathematical Methods Used.- New Robust Analytic Tools.- Spline Regression Models for Complex Multi-Model Regulatory Networks.- Robust Optimization in Spline Regression Models for Regulatory Networks Under Polyhedral Uncertainty.- Real-World Application with Our Robust Tools.- Conclusion and Outlook. 

Produktinformationen

Titel: Robust Optimization of Spline Models and Complex Regulatory Networks
Untertitel: Theory, Methods and Applications
Autor:
EAN: 9783319808901
ISBN: 3319808907
Format: Kartonierter Einband
Herausgeber: Springer International Publishing
Genre: Allgemeines & Lexika
Anzahl Seiten: 152
Gewicht: 242g
Größe: H235mm x B155mm x T8mm
Jahr: 2018
Auflage: Softcover reprint of the original 1st ed. 2016

Weitere Produkte aus der Reihe "Contributions to Management Science"