Willkommen, schön sind Sie da!
Logo Ex Libris

Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning

  • E-Book (pdf)
  • 272 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 118.00
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing systems. This approach is able to utilize complex, diverse and high-dimensional data sets, which often occur in manufacturing applications, and to integrate the important process intra- and interrelations. The approach has been evaluated using three scenarios from different manufacturing domains (aviation, chemical and semiconductor). The results, which are reported in detail in this book, confirmed that it is possible to incorporate implicit process intra- and interrelations on both a process and programme level by applying SVM-based feature ranking. In practice, this method can be used to identify the most important process parameters and state characteristics, the so-called state drivers, of a manufacturing system. Given the increasing availability of data and information, this selection support can be directly utilized in, e.g., quality monitoring and advanced process control. Importantly, the method is neither limited to specific products, manufacturing processes or systems, nor by specific quality concepts.



Inhalt

Introduction.- Developments of manufacturing systems with a focus on product and process quality.- Current approaches with a focus on holistic information management in manufacturing.- Development of the product state concept.- Application of machine learning to identify state drivers.- Application of SVM to identify relevant state drivers.- Evaluation of the developed approach.- Recapitulation.

Produktinformationen

Titel: Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning
Autor:
EAN: 9783319176116
ISBN: 978-3-319-17611-6
Digitaler Kopierschutz: Wasserzeichen
Format: E-Book (pdf)
Herausgeber: Springer
Genre: Technik
Anzahl Seiten: 272
Veröffentlichung: 20.04.2015
Jahr: 2015
Untertitel: Englisch
Dateigrösse: 10.9 MB

Weitere Bände aus der Buchreihe "Springer Theses"