Willkommen, schön sind Sie da!
Logo Ex Libris

Biomedical Optics

  • E-Book (pdf)
  • 376 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
This entry-level textbook, covering the area of tissue optics, is based on the lecture notes for a graduate course (Bio-optical Im... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 104.00
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

This entry-level textbook, covering the area of tissue optics, is based on the lecture notes for a graduate course (Bio-optical Imaging) that has been taught six times by the authors at Texas A&M University. After the fundamentals of photon transport in biological tissues are established, various optical imaging techniques for biological tissues are covered. The imaging modalities include ballistic imaging, quasi-ballistic imaging (optical coherence tomography), diffusion imaging, and ultrasound-aided hybrid imaging. The basic physics and engineering of each imaging technique are emphasized.

A solutions manual is available for instructors; to obtain a copy please email the editorial department at ialine@wiley.com.

Lihong V. Wang, PhD, is Gene K. Beare Distinguished Professor in the Department of Biomedical Engineering and Director of the Optical Imaging Laboratory at Washington University in St. Louis. Dr. Wang is Chair of the International Biomedical Optics Society. His?Monte Carlo model of photon transport in biological tissues has been used worldwide. He has published more than 120 peer-reviewed journal articles and patents.

HSIN-I WU, PhD, is Professor of Biomedical Engineering at Texas A&M University. He has published more than fifty peer-reviewed journal articles. Dr. Wu was a senior Fulbright scholar and is listed in Outstanding Educators of America. He serves on the Editorial Advisory Board of Biocomplexity and the Editorial Board of BioMedical Engineering OnLine.

Autorentext
Lihong V. Wang, PhD, is Gene K. Beare Distinguished Professor in the Department of Biomedical Engineering and Director of the Optical Imaging Laboratory at Washington University in St. Louis. Dr. Wang is Chair of the International Biomedical Optics Society. His?Monte Carlo model of photon transport in biological tissues has been used worldwide. He has published more than 120 peer-reviewed journal articles and patents.

HSIN-I WU, PhD, is Professor of Biomedical Engineering at Texas A&M University. He has published more than fifty peer-reviewed journal articles. Dr. Wu was a senior Fulbright scholar and is listed in Outstanding Educators of America. He serves on the Editorial Advisory Board of Biocomplexity and the Editorial Board of BioMedical Engineering OnLine.



Klappentext

The premier comprehensive reference on biomedical optics for practitioners and students

Biophotonics is a rapidly growing field with applications in medicine, genetics, biology, agriculture, and environmental science.?Written by respected experts, Biomedical Optics: Principles and Imaging is the first thorough reference and textbook on the subject. It covers:

  • The fundamentals of photon transport in biological tissues, including explanations of Rayleigh and Mie scattering, Monte Carlo simulations, the radiative transport equation, and more

  • Various optical imaging techniques for biological tissues, including ballistic or quasi-ballistic imaging (such as confocal microscopy, two-photon microscopy, and optical coherence tomography), diffuse imaging (such as DC, time-domain techniques, and frequency-domain techniques), and ultrasound-aided hybrid imaging (including photoacoustic tomography and ultrasound-modulated optical tomography)

  • The basic physics and engineering of each imaging modality

Complete with equation derivations, examples, and case studies plus a constantly updated Web site featuring an established Monte Carlo program, other sample programs, tables and figures, and more, this is a great reference for practitioners. With an instructor's solutions manual and problems for students to complete, it's an excellent textbook for upper-level undergraduates or graduate students.



Inhalt
Preface.

1. INTRODUCTION.

1.1.Motivation for optical imaging.

1.2.General behavior of light in biological tissue.

1.3.Basic physics of light-matter interaction.

1.4.Absorption and its biological origins.

1.5.Scattering and its biological origins.

1.6.Polarization and its biological origins.

1.7.Fluorescence and its biological origins.

1.8.Image characterization.

1.9.References.

1.10.Further readings.

1.11.Problems.

2. RAYLEIGH THEORY AND MIE THEORY FOR A SINGLE SCATTERER.

2.1.Introduction.

2.2.Summary of the Rayleigh theory.

2.3.Numerical example of the Rayleigh theory.

2.4.Summary of the Mie theory.

2.5.Numerical example of the Mie theory.

2.6.Appendix 2.A. Derivation of the Rayleigh theory.

2.7.Appendix 2.B. Derivation of the Mie theory.

2.8.References.

2.9.Further readings.

2.10.Problems.

3. MONTE CARLO MODELING OF PHOTON TRANSPORT IN BIOLOGICAL TISSUE.

3.1.Introduction.

3.2.Monte Carlo method.

3.3.Definition of problem.

3.4.Propagation of photons.

3.5.Physical quantities.

3.6.Computational examples.

3.7.Appendix 3.A. Summary of MCML.

3.8.Appendix 3.B. Probability density function.

3.9.References.

3.10.Further readings.

3.11.Problems.

4. CONVOLUTION FOR BROADBEAM RESPONSES.

4.1.Introduction.

4.2.General formulation of convolution.

4.3.Convolution over a Gaussian beam.

4.4.Convolution over a top-hat beam.

4.5.Numerical solution to convolution.

4.6.Computational examples.

4.7.Appendix 4.A. Summary of CONV.

4.8.References.

4.9.Further readings.

4.10.Problems.

5. RADIATIVE TRANSFER EQUATION AND DIFFUSION THEORY.

5.1.Introduction.

5.2.Definitions of physical quantities.

5.3.Derivation of the radiative transport equation.

5.4.Diffusion theory.

5.5.Boundary conditions.

5.6.Diffuse reflectance.

5.7.Photon propagation regimes.

5.8.References.

5.9.Further readings.

5.10.Problems.

6. HYBRID MODEL OF MONTE CARLO METHOD AND DIFFUSION THEORY.

6.1.Introduction.

6.2.Definition of problem.

6.3.Diffusion theory.

6.4.Hybrid model.

6.5.Numerical computation.

6.6.Computational examples.

6.7.References.

6.8.Further readings.

6.9.Problems.

7. SENSING OF OPTICAL PROPERTIES AND SPECTROSCOPY.

7.1.Introduction.

7.2.Collimated transmission method.

7.3.Spectrophotometry.

7.4.Oblique-incidence reflectometry.

7.5.White-light spectroscopy.

7.6.Time-resolved measurement.

7.7.Fluorescence spectroscopy.

7.8.Fluorescence modeling.

7.9.References.

7.10.Further readings.

7.11.Problems.

8. BALLISTIC IMAGING AND MICROSCOPY.

8.1.Introduction.

8.2.Characteristics of ballistic light.

8.3.Time-gated imaging.

8.4.Spatial-frequency filtered imaging.

8.5.Polarization-difference imaging.

8.6.Coherence-gated holographic imaging.

8.7.Optical heterodyne imaging.

8.8.Radon transformation and computed tomography.

8.9.Confocal microscopy.

8.10.Two-photon microscopy.

8.11.Appendix 8.A. Holography.

8.12.References.

8.13.Further readings.

8.14.Problems.

9. OPTICAL COHERENCE TOMOGRAPHY.

9.1.Introduction.

9.2.Michelson interferometry.

9.3.Coherence length a...

Produktinformationen

Titel: Biomedical Optics
Untertitel: Principles and Imaging
Autor:
EAN: 9780470177006
ISBN: 978-0-470-17700-6
Digitaler Kopierschutz: Adobe-DRM
Format: E-Book (pdf)
Herausgeber: Wiley-Interscience
Genre: Physik, Astronomie
Anzahl Seiten: 376
Veröffentlichung: 26.09.2012
Jahr: 2012
Untertitel: Englisch
Dateigrösse: 13.5 MB