

Beschreibung
This monograph compiles, rearranges, and refines recent research results in the complex G-L theory with or without immediate applications to the theory of superconductivity. An authoritative reference for applied mathematicians, theoretical physicists and eng...This monograph compiles, rearranges, and refines recent research results in the complex G-L theory with or without immediate applications to the theory of superconductivity. An authoritative reference for applied mathematicians, theoretical physicists and engineers interested in the quantitative description of superconductivity using Ginzburg-Landau theory.
Inhalt
1 Introduction.- 1.1 Brief history.- 1.1.1 Meissner effect - diamagnetism.- 1.1.2 The London equation and the penetration depth.- 1.1.3 The coherence length.- 1.1.4 Classification of superconductors.- 1.1.5 Vortices.- 1.1.6 Summary.- 1.2 The G-L phenomenological theory.- 1.2.1 The free energy and the G-L equations.- 1.2.2 Rescaling and the values of the constants.- 1.2.3 Gauge invariance.- 1.3 Some considerations arising from scaling.- 1.3.1 The two characteristic lengths ?(T) and À(T).- 1.3.2 The validity of the G-L theory.- 1.4 The evolutionary G-L system - 2-d case.- 1.4.1 The system.- 1.4.2 Mathematical scaling.- 1.4.3 The G-L functional as a Lyapunov functional.- 1.4.4 Gauge invariance.- 1.4.5 A uniform bound on |?|.- 1.5 Exterior evolutionary Maxwell system.- 1.5.1 Review of the Maxwell system.- 1.5.2 The G-L superconductivity model.- 1.5.3 The setting of the problem.- 1.6 Exterior steady-state Maxwell system.- 1.7 Surface energy, superconductor classification.- 1.7.1 The sign of ?ns when ? ? 1.- 1.7.2 The sign of ?ns when ? ? 1.- 1.7.3 The case $$\mathcal{K} = 1/\sqrt 2 $$.- 1.7.4 Conclusion.- 1.8 Difference between 2-d and 3-d models.- 1.9 Bibliographical remarks.- 2 Mathematical Foundation.- 2.1 Co-dimension one phase transition problems.- 2.1.1 Steady state problems.- 2.1.2 Evolutionary problems.- 2.1.3 Long time behaviour.- 2.2 Co-dimension two phase transition problems.- 2.2.1 Steady state problems on bounded domains.- 2.2.2 Steady state problems on ?2.- 2.2.3 Evolutionary problems.- 2.2.4 Long time behaviour.- 2.3 Mathematical description of vortices in ?2.- 2.4 Asymptotic methods for describing vortices in ?2.- 2.4.1 Steady state case in ?2.- 2.4.2 Evolutionary case in ?2 - Introduction..- 2.4.3 Evolutionary case in ?2 - far field expansion:.- 2.4.4 Evolutionary case in ?2 - local structure of the far fieldsolution near a vortex.- 2.4.5 Evolutionary case in ?2 - Core expansion.- 2.4.6 Evolutionary case in ?2 - Matching of the core and far fieldexpansions.- 2.4.7 Vortex motion equation.- 2.5 Asymptotic methods for describing vortices in ?3.- 2.5.1 Steady state case in ?3.- 2.5.2 Evolutionary case in ?3.- 2.6 Bibliographical remarks.- 3 Asymptotics Involving Magnetic Potential.- 3.1 Basic facts concerning fluid vortices.- 3.2 Asymptotic analysis.- 3.2.1 2-D steady state case.- 3.2.2 Evolutionary case.- 3.2.3 Far field.- 3.2.4 Core region.- 3.3 Asymptotic analysis of densely packed vortices.- 3.3.1 Outer region - a mean field model.- 3.3.2 Intermediate region.- 3.3.3 Core region.- 3.4 Bibliographical remarks.- 4 Steady State Solutions.- 4.1 Existence of steady state solutions.- 4.1.1 The outside field is a given function, 2-d case.- 4.1.2 The outside field is governed by the Maxwell system, 3-d case.- 4.2 Stability and mapping properties of solutions.- 4.2.1 Non-existence of local maxima.- 4.2.2 Boundedness of the order parameter.- 4.2.3 Constant solutions and mixed state solutions.- 4.3 Co-dimension two vortex domain.- 4.4 Breakdown of superconductivity.- 4.5 A linearized problem.- 4.6 Bibliographical remarks.- 5 Evolutionary Solutions.- 5.1 2-d solutions with given external field.- 5.1.1 Mathematical setting.- 5.1.2 Existence and uniqueness of solutions.- 5.1.3 Proof of Theorem 1.2.- 5.1.4 Proof of Theorem 1.1.- 5.2 Existence of 3-d evolutionary solutions.- 5.3 The existence of an ?-limit set as t ? ?.- 5.4 An abstract theorem on global attractors.- 5.5 Global atractor for the G-L sstem.- 5.6 Physical bounds on the global attractor.- 5.7 The uniqueness of the long time limit of the evolutionary G-L so-lutions.- 5.8 Bibliographical remarks.- 6 Complex G-L Type Phase Transition Theory.- 6.1 Existence and basic properties of solutions.- 6.2 BBH type upper bound for energy of minimizers.- 6.3 Global estimates.- 6.4 Local estimates.- 6.5 The behaviour of solutions near vortices.- 6.6 Global ?-independent estimates.- 6.7 Convergence of the solutions as ? ? 0.- 6.8 Main results on the limit functions.- 6.9 Renormalized energies.- 6.10 Bibliographical remarks.- 7 The Slow Motion of Vortices.- 7.1 Introduction.- 7.2 Preliminaries.- 7.3 Estimates from below for the mobilities.- 7.4 Estimates from above for the mobilities.- 7.5 Bibliographical remarks.- 8 Thin Plate/Film G-L Models.- 8.1 The outside Maxwell system - steady state case.- 8.1.1 The energy bound.- 8.1.2 Convergence properties of the resealed variables.- 8.1.3 Passing to the limit.- 8.2 The outside field is given - evolutionary case.- 8.2.1 Existence and uniqueness of solutions.- 8.2.2 The limit when ? ? 0.- 8.2.3 Some estimates.- 8.2.4 The convergence.- 8.3 The outside field is given - formal analysis.- 8.3.1 Variational formulation.- 8.3.2 Formal asymptotic analysis when ? ? 0.- 8.4 Bibliographical remarks.- 9 Pinning Theory.- 9.1 Local Pohozaev-type identity.- 9.2 Estimate the energy of minimizers.- 9.3 Local estimates.- 9.4 Global Estimates.- 9.5 Convergence of solutions and the term $$ \frac{1} {{\varepsilon ^2 }}\int\Omega {(\left| {\psi \varepsilon } \right|^2 - 1)^2 } $$.- 9.6 Properties of ?, A.- 9.7 Renormalized energy.- 9.8 Pinning of vortices in other circumstances.- 9.8.1 G-L model subject to thermo-perturbation or large horizon-tal field.- 9.8.2 An anisotropic G-L model.- 9.8.3 A thin film G-L model.- 9.9 Bibliographical remarks.- 10 Numerical Analysis.- 10.1 Introduction.- 10.2 Discretization.- 10.2.1 Weak formulation.- 10.2.2 Discretization.- 10.3 Stability estimates.- 10.4 Error estimates.- 10.5 A numerical example.- 10.6 Discretization using variable step length.- 10.7 A dual problem.- 10.7.1 Stability estimates.- 10.7.2 Error representation formula.- 10.8 A posteriori error analysis.- 10.8.1 Residuals.- 10.8.2 Proof of Theorem 4.1.- 10.9 Numerical implementation.- 10.9.1 Comparison of the schemes.- 10.10 Bibliographical remarks.- References.
