Willkommen, schön sind Sie da!
Logo Ex Libris

Independent Component Analysis and Blind Signal Separation

  • E-Book (pdf)
  • 1270 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Inhalt Theory and Fundamentals.- A FastICA Algorithm for Non-negative Independent Component Analysis.- Blind Source Separation by ... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hiererhalten Sie Ihren Download-Link.
CHF 106.50
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Inhalt

Theory and Fundamentals.- A FastICA Algorithm for Non-negative Independent Component Analysis.- Blind Source Separation by Adaptive Estimation of Score Function Difference.- Exploiting Spatiotemporal Information for Blind Atrial Activity Extraction in Atrial Arrhythmias.- Gaussianizing Transformations for ICA.- New Eigensystem-Based Method for Blind Source Separation.- Optimization Issues in Noisy Gaussian ICA.- Optimization Using Fourier Expansion over a Geodesic for Non-negative ICA.- The Minimum Support Criterion for Blind Signal Extraction: A Limiting Case of the Strengthened Young's Inequality.- Accurate, Fast and Stable Denoising Source Separation Algorithms.- An Overview of BSS Techniques Based on Order Statistics: Formulation and Implementation Issues.- Analytical Solution of the Blind Source Separation Problem Using Derivatives.- Approximate Joint Diagonalization Using a Natural Gradient Approach.- BSS, Classification and Pixel Demixing.- Blind Identification of Complex Under-Determined Mixtures.- Blind Separation of Heavy-Tailed Signals Using Normalized Statistics.- Blind Source Separation of Linear Mixtures with Singular Matrices.- Closely Arranged Directional Microphone for Source Separation.- Estimating Functions for Blind Separation when Sources Have Variance-Dependencies.- Framework of Constrained Matrix Gradient Flows.- Identifiability, Subspace Selection and Noisy ICA.- Improving GRNNs in CAD Systems.- Fisher Information in Source Separation Problems.- Localization of P300 Sources in Schizophrenia Patients Using Constrained BSS.- On the Estimation of the Mixing Matrix for Underdetermined Blind Source Separation in an Arbitrary Number of Dimensions.- On the Minimum ?1-Norm Signal Recovery in Underdetermined Source Separation.- On the Strong Uniqueness of Highly Sparse Representations from Redundant Dictionaries.- Reliability of ICA Estimates with Mutual Information.- Robust ICA for Super-Gaussian Sources.- Robustness of Prewhitening Against Heavy-Tailed Sources.- Simultaneous Extraction of Signal Using Algorithms Based on the Nonstationarity.- Space-Time Variant Blind Source Separation with Additive Noise.- The Use of ICA in Speckle Noise.- Theoretical Method for Solving BSS-ICA Using SVM.- Wavelet De-noising for Blind Source Separation in Noisy Mixtures.- Linear Mixture Models.- A Gaussian Mixture Based Maximization of Mutual Information for Supervised Feature Extraction.- Blind Separation of Nonstationary Sources by Spectral Decorrelation.- Delayed AMUSE - A Tool for Blind Source Separation and Denoising.- Dimensionality Reduction in ICA and Rank-(R 1,R 2,...,R N ) Reduction in Multilinear Algebra.- Linear Multilayer Independent Component Analysis Using Stochastic Gradient Algorithm.- Minimax Mutual Information Approach for ICA of Complex-Valued Linear Mixtures.- Signal Reconstruction in Sensor Arrays Using Temporal-Spatial Sparsity Regularization.- Underdetermined Source Separation with Structured Source Priors.- A Grassmann-Rayleigh Quotient Iteration for Dimensionality Reduction in ICA.- An Approach of Moment-Based Algorithm for Noisy ICA Models.- Geometrical ICA-Based Method for Blind Separation of Super-Gaussian Signals.- A Novel Method to Recover N Sources from N-1 Observations and Its Application to Digital Communications.- A Sufficient Condition for Separation of Deterministic Signals Based on Spatial Time-Frequency Representations.- Adaptive Robust Super-exponential Algorithms for Deflationary Blind Equalization of Instantaneous Mixtures.- Application of Gaussian Mixture Models for Blind Separation of Independent Sources.- Asymptotically Optimal Blind Separation of Parametric Gaussian Sources.- Bayesian Approach for Blind Separation of Underdetermined Mixtures of Sparse Sources.- Blind Source Separation Using the Block-Coordinate Relative Newton Method.- Hybridizing Genetic Algorithms with ICA in Higher Dimension.- ICA Using Kernel Entropy Estimation with NlogN Complexity.- Soft-LOST: EM on a Mixture of Oriented Lines.- Some Gradient Based Joint Diagonalization Methods for ICA.- Underdetermined Independent Component Analysis by Data Generation.- Convolutive Models.- Batch Mutually Referenced Separation Algorithm for MIMO Convolutive Mixtures.- Frequency Domain Blind Source Separation for Many Speech Signals.- ICA Model Applied to Multichannel Non-destructive Evaluation by Impact-Echo.- Monaural Source Separation Using Spectral Cues.- Multichannel Speech Separation Using Adaptive Parameterization of Source PDFs.- Non-negative Matrix Factor Deconvolution; Extraction of Multiple Sound Sources from Monophonic Inputs.- Optimal Sparse Representations for Blind Deconvolution of Images.- Separation of Convolutive Mixtures of Cyclostationary Sources: A Contrast Function Based Approach.- A Continuous Time Balanced Parametrization Approach to Multichannel Blind Deconvolution.- A Frequency-Domain Normalized Multichannel Blind Deconvolution Algorithm for Acoustical Signals.- A Novel Hybrid Approach to the Permutation Problem of Frequency Domain Blind Source Separation.- Application of Geometric Dependency Analysis to the Separation of Convolved Mixtures.- Blind Deconvolution of SISO Systems with Binary Source Based on Recursive Channel Shortening.- Blind Deconvolution Using the Relative Newton Method.- Blind Equalization Using Direct Channel Estimation.- Blind MIMO Identification Using the Second Characteristic Function.- Blind Signal Separation of Convolutive Mixtures: A Time-Domain Joint-Diagonalization Approach.- Characterization of the Sources in Convolutive Mixtures: A Cumulant-Based Approach.- CICAAR: Convolutive ICA with an Auto-regressive Inverse Model.- Detection by SNR Maximization: Application to the Blind Source Separation Problem.- Estimating the Number of Sources for Frequency-Domain Blind Source Separation.- Estimating the Number of Sources in a Noisy Convolutive Mixture Using BIC.- Evaluation of Multistage SIMO-Model-Based Blind Source Separation Combining Frequency-Domain ICA and Time-Domain ICA.- On Coefficient Delay in Natural Gradient Blind Deconvolution and Source Separation Algorithms.- On the FIR Inversion of an Acoustical Convolutive Mixing System: Properties and Limitations.- Overcomplete BSS for Convolutive Mixtures Based on Hierarchical Clustering.- Penalty Function Approach for Constrained Convolutive Blind Source Separation.- Permutation Alignment for Frequency Domain ICA Using Subspace Beamforming Methods.- QML Blind Deconvolution: Asymptotic Analysis.- Super-exponential Methods Incorporated with Higher-Order Correlations for Deflationary Blind Equalization of MIMO Linear Systems.- Nonlinear ICA and BSS.- Blind Maximum Likelihood Separation of a Linear-Quadratic Mixture.- Markovian Source Separation in Post-nonlinear Mixtures.- Non-linear ICA by Using Isometric Dimensionality Reduction.- Postnonlinear Overcomplete Blind Source Separation Using Sparse Sources.- Second-Order Blind Source Separation Based on Multi-dimensional Autocovariances.- Separating a Real-Life Nonlinear Mixture of Images.- Independent Slow Feature Analysis and Nonlinear Blind Source Separation.- Nonlinear PCA/ICA for the Structure from Motion Problem.- Plugging an Histogram-Based Contrast Function on a Genetic Algorithm for Solving PostNonLinear-BSS.- Post-nonlinear Independent Component Analysis by Variational Bayesian Learning.- Temporal Decorrelation as Preprocessing for Linear and Post-nonlinear ICA.- Tree-Dependent and Topographic Independent Component Analysis for fMRI Analysis.- Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method.- Speech Processing Applications.- A Geometric Approach for Separating Several Speech Signals.- A Novel Method for Permutation Correction in Frequency-Domain in Blind Separation of Speech Mixtures.- Convolutive Acoustic Mixtures Approximation to an Instantaneous Model Using a Stereo Boundary Microphone Configuration.- DOA Detection from HOS by FOD Beamforming and Joint-Process Estimation.- Nonlinear Postprocessing for Blind Speech Separation.- Real-Time Convolutive Blind Source Separation Based on a Broadband Approach.- A New Approach to the Permutation Problem in Frequency Domain Blind Source Separation.- Adaptive Cross-Channel Interference Cancellation on Blind Source Separation Outputs.- Application of the Mutual Information Minimization to Speaker Recognition / Verification Improvement.- Single Channel Speech Enhancement: MAP Estimation Using GGD Prior Under Blind Setup.- Stable and Low-Distortion Algorithm Based on Overdetermined Blind Separation for Convolutive Mixtures of Speech.- Two Channel, Block Adaptive Audio Separation Using the Cross Correlation of Time Frequency Information.- Underdetermined Blind Separation of Convolutive Mixtures of Speech with Directivity Pattern Based Mask and ICA.- Image Processing Applications.- A Digital Watermarking Technique Based on ICA Image Features.- A Model for Analyzing Dependencies Between Two ICA Features in Natural Images.- An Iterative Blind Source Separation Method for Convolutive Mixtures of Images.- Astrophysical Source Separation Using Particle Filters.- Independent Component Analysis in the Watermarking of Digital Images.- Spatio-chromatic ICA of a Mosaiced Color Image.- An Extended Maximum Likelihood Approach for the Robust Blind Separation of Autocorrelated Images from Noisy Mixtures.- Blind Separation of Spatio-temporal Data Sources.- Data Hiding in Independent Components of Video.- Biomedical Applications.- 3D Spatial Analysis of fMRI Data on a Word Perception Task.- Decomposition of Synthetic Multi-channel Surface-Electromyogram Using Independent Component Analysis.- Denoising Using Local ICA and a Generalized Eigendecomposition with Time-Delayed Signals.- MEG/EEG Source Localization Using Spatio-temporal Sparse Representations.- Reliable Measurement of Cortical Flow Patterns Using Complex Independent Component Analysis of Electroencephalographic Signals.- Sensor Array and Electrode Selection for Non-invasive Fetal Electrocardiogram Extraction by Independent Component Analysis.- A Comparison of Time Structure and Statistically Based BSS Methods in the Context of Long-Term Epileptiform EEG Recordings.- A Framework for Evaluating ICA Methods of Artifact Removal from Multichannel EEG.- A New Method for Eliminating Stimulus Artifact in Transient Evoked Otoacoustic Emission Using ICA.- An Efficient Time-Frequency Approach to Blind Source Separation Based on Wavelets.- Blind Deconvolution of Close-to-Orthogonal Pulse Sources Applied to Surface Electromyograms.- Denoising Mammographic Images Using ICA.- Independent Component Analysis of Pulse Oximetry Signals Based on Derivative Skew.- Mixing Matrix Pseudostationarity and ECG Preprocessing Impact on ICA-Based Atrial Fibrillation Analysis.- 'Signal Subspace' Blind Source Separation Applied to Fetal Magnetocardiographic Signals Extraction.- Suppression of Ventricular Activity in the Surface Electrocardiogram of Atrial Fibrillation.- Unraveling Spatio-temporal Dynamics in fMRI Recordings Using Complex ICA.- Wavelet Domain Blind Signal Separation to Analyze Supraventricular Arrhythmias from Holter Registers.- Other Applications.- A New Auditory-Based Index to Evaluate the Blind Separation Performance of Acoustic Mixtures.- An Application of ICA to Identify Vibratory Low-Level Signals Generated by Termites.- Application of Blind Source Separation to a Novel Passive Location.- Blind Source Separation in the Adaptive Reduction of Inter-channel Interference for OFDM.- BSS for Series of Electron Energy Loss Spectra.- HOS Based Distinctive Features for Preliminary Signal Classification.- ICA as a Preprocessing Technique for Classification.- Joint Delay Tracking and Interference Cancellation in DS-CDMA Systems Using Successive ICA for Oversaturated Data.- Layered Space Frequency Equalisation for MIMO-MC-CDMA Systems in Frequency Selective Fading Channels.- Multiuser Detection and Channel Estimation in MIMO OFDM Systems via Blind Source Separation.- Music Transcription with ISA and HMM.- On Shift-Invariant Sparse Coding.- Reliability in ICA-Based Text Classification.- Source Separation on Astrophysical Data Sets from the WMAP Satellite.- Multidimensional ICA for the Separation of Atrial and Ventricular Activities from Single Lead ECGs in Paroxysmal Atrial Fibrillation Episodes.- Music Indexing Using Independent Component Analysis with Pseudo-generated Sources.- Invited Contributions.- Lie Group Methods for Optimization with Orthogonality Constraints.- A Hierarchical ICA Method for Unsupervised Learning of Nonlinear Dependencies in Natural Images.

Produktinformationen

Titel: Independent Component Analysis and Blind Signal Separation
Untertitel: Fifth International Conference, ICA 2004, Granada, Spain, September 22-24, 2004, Proceedings
Editor:
EAN: 9783540301103
Format: E-Book (pdf)
Hersteller: Springer Berlin Heidelberg
Genre: Grundlagen
Veröffentlichung: 27.10.2004
Digitaler Kopierschutz: Wasserzeichen
Dateigrösse: 49.83 MB
Anzahl Seiten: 1270

Weitere Bände aus der Buchreihe "Lecture Notes in Computer Science"