Willkommen, schön sind Sie da!
Logo Ex Libris

Building Brains

  • E-Book (epub)
  • 384 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Provides a highly visual, readily accessible introduction to the main events that occur during neural development and their mechan... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 76.00
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.

Beschreibung

Provides a highly visual, readily accessible introduction to the main events that occur during neural development and their mechanisms

Building Brains: An Introduction to Neural Development, 2nd Edition describes how brains construct themselves, from simple beginnings in the early embryo to become the most complex living structures on the planet. It explains how cells first become neural, how their proliferation is controlled, what regulates the types of neural cells they become, how neurons connect to each other, how these connections are later refined under the influence of neural activity, and why some neurons normally die. This student-friendly guide stresses and justifies the generally-held belief that a greater knowledge of how nervous systems construct themselves will help us find new ways of treating diseases of the nervous system that are thought to originate from faulty development, such as autism spectrum disorders, epilepsy, and schizophrenia.

  • A concise, illustrated guide focusing on core elements and emphasizing common principles of developmental mechanisms, supplemented by suggestions for further reading
  • Text boxes provide detail on major advances, issues of particular uncertainty or controversy, and examples of human diseases that result from abnormal development
  • Introduces the methods for studying neural development, allowing the reader to understand the main evidence underlying research advances
  • Offers a balanced mammalian/non-mammalian perspective (and emphasizes mechanisms that are conserved across species), drawing on examples from model organisms like the fruit fly, nematode worm, frog, zebrafish, chick, mouse and human
  • Associated Website includes all the figures from the textbook and explanatory movies

Filled with full-colorartwork that reinforces important concepts; an extensive glossary and definitions that help readers from different backgrounds; and chapter summaries that stress important points and aid revision, Building Brains: An Introduction to Neural Development, 2nd Edition is perfect for undergraduate students and postgraduates who may not have a background in neuroscience and/or molecular genetics.

'This elegant book ranges with ease and authority over the vast field of developmental neuroscience. This excellent textbook should be on the shelf of every neuroscientist, as well as on the reading list of every neuroscience student.' 
-Sir Colin Blakemore, Oxford University

'With an extensive use of clear and colorful illustrations, this book makes accessible to undergraduates the beauty and complexity of neural development. The book fills a void in undergraduate neuroscience curricula.'
-Professor Mark Bear, Picower Institute, MIT.

Highly Commended, British Medical Association Medical Book Awards 2012

Published with the New York Academy of Sciences



DAVID J. PRICE, ANDREW P. JARMAN, JOHN O. MASON, PETER C. KIND, Centre for Integrative Physiology, University of Edinburgh, UK.

Autorentext

DAVID J. PRICE, ANDREW P. JARMAN, JOHN O. MASON, PETER C. KIND, Centre for Integrative Physiology, University of Edinburgh, UK.

Klappentext

Praise for the First Edition
"This elegant book ranges with ease and authority over the vast field of developmental neuroscience. This excellent textbook should be on the shelf of every neuroscientist, as well as on the reading list of every neuroscience student."

Sir Colin Blakemore, Oxford University

"With an extensive use of clear and colorful illustrations, this book makes accessible to undergraduates the beauty and complexity of neural development. The book fills a void in undergraduate neuroscience curricula."

Professor Mark Bear, Picower Institute, MIT.

Highly Commended, British Medical Association Medical Book Awards 2012

Provides a highly visual, readily accessible introduction to the main events that occur during neural development and their mechanisms

Building Brains: An Introduction to Neural Development, Second Edition describes how brains construct themselves, from simple beginnings in the early embryo to become the most complex living structures on the planet. It explains how cells first become neural, how their proliferation is controlled, what regulates the types of neural cells they become, how neurons connect to each other, how these connections are later refined under the influence of neural activity, and why some neurons normally die. This student-friendly guide stresses and justifies the generally-held belief that a greater knowledge of how nervous systems construct themselves will help us find new ways of treating diseases of the nervous system that are thought to originate from faulty development, such as autism spectrum disorders, epilepsy, and schizophrenia.

  • A concise, illustrated guide focusing on core elements and emphasizing common principles of developmental mechanisms, supplemented by suggestions for further reading
  • Text boxes provide detail on major advances, issues of particular uncertainty or controversy, and examples of human diseases that result from abnormal development
  • Introduces the methods for studying neural development, allowing the reader to understand the main evidence underlying research advances
  • Offers a balanced mammalian/non-mammalian perspective (and emphasizes mechanisms that are conserved across species), drawing on examples from model organisms like the fruit fly, nematode worm, frog, zebrafish, chick, mouse and human
  • Associated Website includes all the figures from the textbook and explanatory videos

Filled with full-color artwork that reinforces important concepts; an extensive glossary and definitions that help readers from different backgrounds; and chapter summaries that stress important points and aid revision, Building Brains: An Introduction to Neural Development, Second Edition is perfect for undergraduate students and postgraduates who may not have a background in neuroscience and/or molecular genetics.

Published with the New York Academy of Sciences

Inhalt

Preface to Second Edition xi

Preface to First Edition xiii

Conventions and Commonly used Abbreviations xv

Introduction xix

About the Companion Website xxiii

1 Models and Methods for Studying Neural Development 1

1.1 What is neural development? 1

1.2 Why research neural development? 2

The uncertainty of current understanding 2

Implications for human health 3

Implications for future technologies 4

1.3 Major breakthroughs that have contributed to understanding developmental mechanisms 4

1.4 Invertebrate model organisms 5

Fly 5

Worm 7

Other invertebrates 11

1.5 Vertebrate model organisms 11

Frog 11

Chick 12

Zebrafish 12

Mouse 12

Humans 19

Other vertebrates 20

1.6 Observation and experiment: methods for studying neural development 23

1.7 Summary 24

2 The Anatomy of Developing Nervous Systems 25

2.1 The nervous system develops from the embryonic neuroectoderm 25

2.2 Anatomical terms used to describe locations in embryos 26

2.3 Development of the neuroectoderm of invertebrates 27

C. elegans 27

Drosophila 27

2.4 Development of the neuroectoderm of vertebrates and the process of neurulation 30

Frog 31

Chick 33

Zebrafish 35

Mouse 36

Human 43

2.5 Secondary neurulation in vertebrates 47

2.6 Formation of invertebrate and vertebrate peripheral nervous systems 47

Invertebrates 49

Vertebrates: the neural crest and the placodes 49

Vertebrates: development of sense organs 50

2.7 Summary 52

3 Neural Induction: An Example of How Intercellular Signalling Determines Cell Fates 53

3.1 What is neural induction? 53

3.2 Specification and commitment 54

3.3 The discovery of neural induction 54

3.4 A more recent breakthrough: identifying molecules that mediate neural induction 56

3.5 Conservation of neural induction mechanisms in Drosophila 58

3.6 Beyond the default model other signalling pathways involved in neural induction 59

3.7 Signal transduction: how cells respond to intercellular signals 64

3.8 Intercellular signalling regulates gene expression 65

General mechanisms of transcriptional regulation 65

Transcription factors involved in neural induction 67

What genes do transcription factors control? 69

Gene function can also be controlled by other mechanisms 71

3.9 The essence of development: a complex interplay of intercellular and intracellular signalling 75

3.10 Summary 75

4 Patterning the Neuroectoderm 77

4.1 Regional patterning of the nervous system 77

Patterns of gene expression are set up by morphogens 78

Patterning happens progressively 80

4.2 Patterning the anteroposterior (AP) axis of the Drosophila CNS 81

From gradients of signals to domains of transcription factor expression 81

Dividing the ectoderm into segmental units 83

Assigning segmental identity the Hox code 83

4.3 Patterning the AP axis of the vertebrate CNS 86

Hox genes are highly conserved 87

Initial AP information is imparted by the mesoderm 88

Genes that pattern the anterior brain 90

4.4 Local patterning in Drosophila: refining neural patterning within segments 91

In Drosophila a signalling boundary within each segment provides local AP positional information 92

Patterning in the Drosophila dorsoventral(DV) axis 94

Unique neuroblast identities from the integration of AP and DV patterning information 96

4.5 Local patterning in the vertebrate nervous system 97

In the vertebrate brain, AP boundaries organize local patterning 97

Patterning in the DV axis of the vertebrate CNS 99

Signal gradients that drive DV patterning 100

SHH and BMP are morphogens for DV progenitor domains in the neural tube 101

Integration of AP and DV patterning information 103

4.6 Summary 103

5 Neurogenesis: Generating Neural Cells 105

5.1 Generating neural cells 105

5.2 Neurogenesis in Drosophila 106

Proneural genes promote neural commitment 106

Lateral inhibition: Notch signalling inhibits commitment 106

5.3 Neurogenesis in vertebrates 107

Proneural genes are conserved 107

In the vertebrate CNS, neurogenesis involves radial glial cells 111

Proneural factors and Notch signaling in the vertebrate CNS 111

5.4 The regulation of neuronal subtype identity 114

Different proneural genes different programmes of neurogenesis 114

Combinatorial control by transcription factors creates neuronal diversity 114

5.5 The regulation of cell proliferation during neurogenesis 117

Signals that promote proliferation 117...

Produktinformationen

Titel: Building Brains
Untertitel: An Introduction to Neural Development
Autor:
EAN: 9781119293712
ISBN: 978-1-119-29371-2
Digitaler Kopierschutz: Adobe-DRM
Format: E-Book (epub)
Herausgeber: Wiley
Genre: Sonstiges
Anzahl Seiten: 384
Veröffentlichung: 25.09.2017
Jahr: 2017
Auflage: 2. Aufl.
Untertitel: Englisch
Dateigrösse: 60.2 MB