Willkommen, schön sind Sie da!
Logo Ex Libris

Growth Curve Analysis and Visualization Using R

  • E-Book (pdf)
  • 188 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Learn How to Use Growth Curve Analysis with Your Time Course Data An increasingly prominent statistical tool in the behavioral sci... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 74.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.

Beschreibung

Zusammenfassung
Learn How to Use Growth Curve Analysis with Your Time Course Data An increasingly prominent statistical tool in the behavioral sciences, multilevel regression offers a statistical framework for analyzing longitudinal or time course data. It also provides a way to quantify and analyze individual differences, such as developmental and neuropsychological, in the context of a model of the overall group effects. To harness the practical aspects of this useful tool, behavioral science researchers need a concise, accessible resource that explains how to implement these analysis methods.Growth Curve Analysis and Visualization Using R provides a practical, easy-to-understand guide to carrying out multilevel regression/growth curve analysis (GCA) of time course or longitudinal data in the behavioral sciences, particularly cognitive science, cognitive neuroscience, and psychology. With a minimum of statistical theory and technical jargon, the author focuses on the concrete issue of applying GCA to behavioral science data and individual differences. The book begins with discussing problems encountered when analyzing time course data, how to visualize time course data using the ggplot2 package, and how to format data for GCA and plotting. It then presents a conceptual overview of GCA and the core analysis syntax using the lme4 package and demonstrates how to plot model fits. The book describes how to deal with change over time that is not linear, how to structure random effects, how GCA and regression use categorical predictors, and how to conduct multiple simultaneous comparisons among different levels of a factor. It also compares the advantages and disadvantages of approaches to implementing logistic and quasi-logistic GCA and discusses how to use GCA to analyze individual differences as both fixed and random effects. The final chapter presents the code for all of the key examples along with samples demonstrating how to report GCA results.Throughout the book, R code illustrates how to implement the analyses and generate the graphs. Each chapter ends with exercises to test your understanding. The example datasets, code for solutions to the exercises, and supplemental code and examples are available on the author's website.

Inhalt

Time Course Data
Chapter overview
What are "time course data"?
Key challenges in analyzing time course data
Visualizing time course data
Formatting data for analysis and plotting

Conceptual Overview of Growth Curve Analysis
Chapter overview
Structure of a growth curve model
A simple growth curve analysis
Another example: Visual search response times

When Change over Time Is Not Linear
Chapter overview
Choosing a functional form
Using higher-order polynomials
Example: Word learning
Parameter-specific p-values
Reporting growth curve analysis results

Structuring Random Effects
Chapter overview
"Keep it maximal"
Within-participant effects
Participants as random vs. fixed effects
Visualizing effects of polynomial time terms

Categorical Predictors
Chapter overview
Coding categorical predictors
Multiple comparisons

Binary Outcomes: Logistic GCA
Chapter overview
Why binary outcomes need logistic analyses
Logistic GCA
Quasi-logistic GCA: Empirical logit
Plotting model fits

Individual Differences
Chapter overview
Individual differences as fixed effects
Individual differences as random effects

Complete Examples
Linear change
Orthogonal polynomials
Within-subject manipulation
Logistic GCA
Quasi-logistic GCA
Individual differences as fixed effects
Individual differences as random effects

References

Index

Exercises appear at the end of each chapter.

Produktinformationen

Titel: Growth Curve Analysis and Visualization Using R
Autor:
EAN: 9781315362700
ISBN: 978-1-315-36270-0
Digitaler Kopierschutz: Adobe-DRM
Format: E-Book (pdf)
Herausgeber: Crc Press
Genre: Grundlagen
Anzahl Seiten: 188
Veröffentlichung: 07.09.2017
Jahr: 2017
Untertitel: Englisch