Willkommen, schön sind Sie da!
Logo Ex Libris

A Practical Approach to Signals and Systems

  • E-Book (pdf)
  • 400 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Concisely covers all the important concepts in an easy-to-understand wayGaining a strong sense of signals and systems fundamentals... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 86.00
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.

Beschreibung

Concisely covers all the important concepts in an easy-to-understand way

Gaining a strong sense of signals and systems fundamentals is key for general proficiency in any electronic engineering discipline, and critical for specialists in signal processing, communication, and control. At the same time, there is a pressing need to gain mastery of these concepts quickly, and in a manner that will be immediately applicable in the real word.

Simultaneous study of both continuous and discrete signals and systems presents a much easy path to understanding signals and systems analysis. In A Practical Approach to Signals and Systems, Sundararajan details the discrete version first followed by the corresponding continuous version for each topic, as discrete signals and systems are more often used in practice and their concepts are relatively easier to understand. In addition to examples of typical applications of analysis methods, the author gives comprehensive coverage of transform methods, emphasizing practical methods of analysis and physical interpretations of concepts.

  • Gives equal emphasis to theory and practice
  • Presents methods that can be immediately applied
  • Complete treatment of transform methods
  • Expanded coverage of Fourier analysis
  • Self-contained: starts from the basics and discusses applications
  • Visual aids and examples makes the subject easier to understand
  • End-of-chapter exercises, with a extensive solutions manual for instructors
  • MATLAB software for readers to download and practice on their own
  • Presentation slides with book figures and slides with lecture notes

A Practical Approach to Signals and Systems is an excellent resource for the electrical engineering student or professional to quickly gain an understanding of signal analysis concepts - concepts which all electrical engineers will eventually encounter no matter what their specialization. For aspiring engineers in signal processing, communication, and control, the topics presented will form a sound foundation to their future study, while allowing them to quickly move on to more advanced topics in the area.

Scientists in chemical, mechanical, and biomedical areas will also benefit from this book, as increasing overlap with electrical engineering solutions and applications will require a working understanding of signals. Compact and self contained, A Practical Approach to Signals and Systems be used for courses or self-study, or as a reference book.

Autorentext
D. Sundararajan is a consultant in digital signal processing at NewTech Software Pt. Ltd in Bangalore India. He has taught undergraduate and graduate classes in digital signal processing, engineering mathematics, programming, operating systems and digital logic design at Concordia University, Canada and Nanyang Technological Institute, Singapore. Sundararajan is the principal inventor of the latest family of Discrete Fourier Transform (DFT) algorithms, and has published two books on DFT and related areas. He also wrote a lab manual for the Digital Electronics Course at Concordia University, and has three patents in fast Fourier transforms. Over the course of his engineering career he has held positions at the National Aerospace Laboratory, Bangalore, the National Physical Laboratory, New Delhi, working on the design of digital and analog signal processing systems. Sundararajan holds a B.E. in Electrical Engineering from Madras University, an M.Tech in Electrical Engineering from IIT Chennai, and a Ph.D. in the same from Concordia University.

Klappentext
A Practical Approach to Signals and Systems is an excellent resource for the electrical engineering student or professional to quickly gain an understanding of signal analysis concepts -- concepts all electrical engineers will eventually encounter no matter what their specialization. For aspiring engineers in signal processing, communication, and control, the topics presented will form a sound foundation to their future study, while allowing them to quickly move on to more advanced topics in the area.

Sundararajan presents an easier path to understanding signals and systems analysis by using simultaneous study of both continuous and discrete signals. As discrete signals and systems are more often used in practice, and their concepts are relatively easy to understand, the author details discrete versions first followed by the corresponding continuous version for each topic. In addition to examples of typical applications of analysis techniques, Sundararajan gives comprehensive coverage of transform methods, emphasizing a practical approach to analysis and physical interpretations of concepts.

  • Gives equal emphasis to theory and practice
  • Presents methods that can be immediately applied
  • Complete treatment of transform methods
  • Expanded coverage of Fourier analysis
  • Self-contained: starts from the basics and discusses applications
  • Visual aids and examples make the subject easier to understand
  • End-of-chapter exercises, with an extensive solutions manual for instructors
  • MATLAB software for readers to download and practice on their own

Scientists in chemical, mechanical, and biomedical areas will also benefit from this book, as increasing overlap with electrical engineering solutions and applications will require a working understanding of signals. Compact and self contained, A Practical Approach to Signals and Systems can be used for courses or self-study, or as a reference book.

Access the solutions manual to this text at the companion website -

http://www.wiley.com/go/sundararajan



Zusammenfassung
Concisely covers all the important concepts in an easy-to-understand way

Gaining a strong sense of signals and systems fundamentals is key for general proficiency in any electronic engineering discipline, and critical for specialists in signal processing, communication, and control. At the same time, there is a pressing need to gain mastery of these concepts quickly, and in a manner that will be immediately applicable in the real word.

Simultaneous study of both continuous and discrete signals and systems presents a much easy path to understanding signals and systems analysis. In A Practical Approach to Signals and Systems, Sundararajan details the discrete version first followed by the corresponding continuous version for each topic, as discrete signals and systems are more often used in practice and their concepts are relatively easier to understand. In addition to examples of typical applications of analysis methods, the author gives comprehensive coverage of transform methods, emphasizing practical methods of analysis and physical interpretations of concepts.

  • Gives equal emphasis to theory and practice
  • Presents methods that can be immediately applied
  • Complete treatment of transform methods
  • Expanded coverage of Fourier analysis
  • Self-contained: starts from the basics and discusses applications
  • Visual aids and examples makes the subject easier to understand
  • End-of-chapter exercises, with a extensive solutions manual for instructors
  • MATLAB software for readers to download and practice on their own
  • Presentation slides with book figures and slides with lecture notes

A Practical Approach to Signals and Systems is an excellent resource for the electrical engineering student or professional to quickly gain an understanding of signal analysis concepts - concepts which all electrical engineers will eventually encounter no matter what their specialization. For aspiring engineers in signal processing, communication, and control, the topics presented will form a sound foundation to their future study, while allowing them to quickly move on to more advanced topics in the area.

Scientists in chemical, mechanical, and biomedical areas will also benefit from this book, as increasing overlap with electrical engineering solutions and applications will require a working understanding of signals. Compact and self contained, A Practical Approach to Signals and Systems be used for courses or self-study, or as a reference book.



Inhalt

Preface xiii

Abbreviations xv

1 Introduction 1

1.1 The Organization of this Book 1

2 Discrete Signals 5

2.1 Classification of Signals 5

2.1.1 Continuous, Discrete and Digital Signals 5

2.1.2 Periodic and Aperiodic Signals 7

2.1.3 Energy and Power Signals 7

2.1.4 Even- and Odd-symmetric Signals 8

2.1.5 Causal and Noncausal Signals 10

2.1.6 Deterministic and Random Signals 10

2.2 Basic Signals 11

2.2.1 Unit-impulse Signal 11

2.2.2 Unit-step Signal 12

2.2.3 Unit-ramp Signal 13

2.2.4 Sinusoids and Exponentials 13

2.3 Signal Operations 20

2.3.1 Time Shifting 21

2.3.2 Time Reversal 21

2.3.3 Time Scaling 22

2.4 Summary 23

Further Reading 23

Exercises 23

3 Continuous Signals 29

3.1 Classification of Signals 29

3.1.1 Continuous Signals 29

3.1.2 Periodic and Aperiodic Signals 30

3.1.3 Energy and Power Signals 31

3.1.4 Even- and Odd-symmetric Signals 31

3.1.5 Causal and Noncausal Signals 33

3.2 Basic Signals 33

3.2.1 Unit-step Signal 33

3.2.2 Unit-impulse Signal 34

3.2.3 Unit-ramp Signal 42

3.2.4 Sinusoids 43

3.3 Signal Operations 45

3.3.1 Time Shifting 45

3.3.2 Time Reversal 46

3.3.3 Time Scaling 47

3.4 Summary 48

Further Reading 48

Exercises 48

4 Time-domain Analysis of Discrete Systems 53

4.1 Difference Equation Model 53

4.1.1 System Response 55

4.1.2 Impulse Response 58

4.1.3 Characterization of Systems by their Responses to Impulse and Unit-step Signals 60

4.2 Classification of Systems 61

4.2.1 Linear and Nonlinear Systems 61

4.2.2 Time-invariant and Time-varying Systems 62

4.2.3 Causal and Noncausal Systems 63

4.2.4 Instantaneous and Dynamic Systems 64

4.2.5 Inverse Systems 64

4.2.6 Continuous and Discrete Systems 64

4.3 ConvolutionSummation Model 64

4.3.1 Properties of ConvolutionSummation 67

4.3.2 The Difference Equation and ConvolutionSummation 68

4.3.3 Response to Complex Exponential Input 69

4.4 System Stability 71

4.5 Realization of Discrete Systems 72

4.5.1 Decomposition of Higher-order Systems 73

4.5.2 Feedback Systems 74

4.6 Summary 74

Further Reading 75

Exercises 75

5 Time-domain Analysis of Continuous Systems 79

5.1 Classification of Systems 80

5.1.1 Linear and Nonlinear Systems 80

5.1.2 Time-invariant and Time-varying Systems 81

5.1.3 Causal and Noncausal Systems 82

5.1.4 Instantaneous and Dynamic Systems 83

5.1.5 Lumped-parameter and Distributed-parameter Systems 83

5.1.6 Inverse Systems 83

5.2 Differential Equation Model 83

5.3 Convolution-integral Model 85

5.3.1 Properties of the Convolution-integral 87

5.4 System Response 88

5.4.1 Impulse Response 88

5.4.2 Response to Unit-step Input 89

5.4.3 Characterization of Systems by their Responses to Impulse and Unit-step Signals 91

5.4.4 Response to Complex Exponential Input 92

5.5 System Stability 93

5.6 Realization of Continuous Systems 94

5.6.1 Decomposition of Higher-order Systems 94

5.6.2 Feedback Systems 95

5.7 Summary 96

Further Reading 97

Exercises 97

6 The Discrete Fourier Transform 101

6.1 The Time-domain and the Frequency-domain 101

6.2 Fourier Analysis 102

6.2.1 Versions of Fourier Analysis 104

6.3 The Discrete Fourier Transform 104

6.3.1 The Approximation of Arbitrary Waveforms with a Finite Number of Samples 104

6.3.2 The DFT and the IDFT 105

6.3.3 DFT of Some Basic Signals 107

6.4 Properties of the Discrete Fourier Transform 110

6.4.1 Linearity 110

6.4.2 Periodicity 110

6.4.3 Circular Shift of a Sequence 110

6.4.4 Circular Shift of a Spectrum 111

6.4.5 Symmetry 111

6.4.6 Circular Convolution of Time-domain Sequences 112

6.4.7 Circular Convolution of Frequency-domain Sequences 113

6.4.8 Parseval's Theorem 114

6.5 Applications of the Discrete Fourier Transform 114

6.5.1 Computation of the Linear Convolution Using the DFT 114

6.5.2 Interpolation and Decimation 115

6.6 Summary 119

Further Reading 119

Exercises 119

7 Fourier Series 123

7.1 Fourier Series 123

7.1.1 FS as the Limiting Case of the DFT 123

7.1.2 The Compact Trigonometric Form of the FS 125

7.1.3 The Trigonometric Form of the FS 126

7.1.4 Periodicity of the FS 126

7.1.5 Existence of the FS 126

7.1.6 Gibbs Phenomenon 130

7.2 Properties of the Fourier Series 132

7.2.1 Linearity 133

7.2.2 Sy...

Produktinformationen

Titel: A Practical Approach to Signals and Systems
Autor:
EAN: 9780470823545
ISBN: 978-0-470-82354-5
Digitaler Kopierschutz: Adobe-DRM
Format: E-Book (pdf)
Herausgeber: Wiley
Genre: Sonstiges
Anzahl Seiten: 400
Veröffentlichung: 04.03.2009
Jahr: 2009
Untertitel: Englisch
Dateigrösse: 3.2 MB