Willkommen, schön sind Sie da!
Logo Ex Libris

Einführung in die numerische Berechnung von Finanzderivaten

  • E-Book (pdf)
  • 248 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
In jüngster Zeit haben Finanz-Derivate eine starke Verbreitung erfahren. Das vorliegende Lehrbuch bietet eine elementare Einführun... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 26.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

In jüngster Zeit haben Finanz-Derivate eine starke Verbreitung erfahren. Das vorliegende Lehrbuch bietet eine elementare Einführung in diejenigen Methoden der Numerik und des Wissenschaftichen Rechnens, die insbesondere für die Berechung von Optionspreisen grundlegend sind. Nach einer kurzen Beschreibung der Modellierung von Standard-Optionen folgt als erster Hauptteil die numerische Simulation der Stochastik mit der Berechnung von Zufallszahlen, der Integration von stochastischen Differentialgleichungen und dem Einsatz von Monte-Carlo-Verfahren. Der zweite Hauptteil konzentriert sich auf die Numerik zu den Black-Scholes Ansätzen mit partiellen Differential-Gleichungen und -Ungleichungen. Dabei werden Lösungsalgorithmen von Differenzenverfahren und von Finite-Element-Verfahren erklärt. Übungsaufgaben, instruktive Abbildungen sowie themenbezogene Anhänge runden das Buch ab. Lösungshinweise zu ausgewählten Aufgaben werden unter http://www.mi.uni-koeln.de/numerik/compfin/ bereitgestellt.

Bietet eine verständliche Einführung in das Thema Finanzderivate

Zeigt neuste Erkenntnisse zur Anwendung von numerischen Methoden in der Finanzmathematik auf

Enthält viele informative Abbildungen und Übungen, etliche davon mit Lösungshinweisen auf der Webseite des Autors



Autorentext

Prof. Dr. Rüdiger Seydel, Mathematisches Institut, Universität zu Köln, Köln



Inhalt
1 Grundlagen.- 1.1 Optionen.- 1.2 Partielle Differentialgleichungen.- 1.3 Numerische Methoden.- 1.4 Binomial-Bäume.- 1.5 Stochastische Prozesse.- 1.6 Stochastische Differentialgleichungen.- 1.6.1 Itô-Prozess.- 1.6.2 Anwendung auf Aktien.- 1.7 Itô-Lemma und Folgerungen.- Anmerkungen.- Übungsaufgaben.- 2 Berechnung von Zahlen nach vorgebenen Verteilungen.- 2.1 Pseudo-Zufallszahlen.- 2.1.1 Lineare Kongruenz-Methoden.- 2.1.2 Zufalls-Vektoren.- 2.1.3 Fibonacci-Generatoren.- 2.2 Transformierte Zufallsvariable.- 2.2.1 Inversion.- 2.2.2 Transformation im ?1.- 2.2.3 Transformation im ?n.- 2.3 Normalverteilte Zufallsvariable.- 2.3.1 Methode von Box-Muller (1958).- 2.3.2 Methode von Marsaglia.- 2.3.3 Korrelierte Zufallsvariable.- 2.4 Zahlenfolgen mit niedriger Diskrepanz.- 2.4.1 Monte-Carlo-Integration.- 2.4.2 Diskrepanz.- 2.4.3 Beispiele von Folgen niedriger Diskrepanz.- Anmerkungen.- Übungsaufgaben.- 3 Integration von Stochastischen Differentialgleichungen.- 3.1 Genauigkeit.- 3.2 Stochastische Taylorentwicklungen.- 3.3 Beispiele Numerischer Methoden.- 3.4 Zwischenwerte.- 3.5 Monte-Carlo-Simulation.- Anmerkungen.- Übungsaufgaben.- 4 Black-Scholes und Finite Differenzen.- 4.1 Vorbereitungen.- 4.2 Grundlagen von Differenzenverfahren.- 4.2.1 Differenzen-Approximationen.- 4.2.2 Das Gitter.- 4.2.3 Explizites Verfahren.- 4.2.4 Stabilität.- 4.2.5 Implizite Methode.- 4.3 Crank-Nicolson Verfahren.- 4.4 Randbedingungen.- 4.5 Amerikanische Optionen als freie Randwertprobleme.- 4.5.1 Freie Randwertprobleme.- 4.5.2 Black-Scholes-Ungleichung.- 4.5.3 Hindernis-Probleme.- 4.5.4 Lineare Komplementarität für Amerikanische Put Optionen.- 4.6 Berechnung amerikanischer Optionen.- 4.6.1 Diskretisierung mit Finiten Differenzen.- 4.6.2 Iterative Lösung.- 4.6.3 Algorithmus zur Berechnung von Amerikanischen Optionen.- 4.7 Zur Genauigkeit.- Anmerkungen.- Übungsaufgaben.- 5 Finite-Element-Methoden.- 5.1 Gewichtete Residuen.- 5.1.1 Prinzip der gewichteten Residuen.- 5.1.2 Beispiele für Gewichtsfunktionen.- 5.1.3 Beispiele für Basisfunktionen.- 5.2 Galerkin-Ansatz mit Hutfunktionen.- 5.2.1 Hutfunktionen.- 5.2.2 Eine einfache Anwendung.- 5.3 Anwendung auf Optionen.- 5.4 Fehlerabschätzungen.- 5.4.1 Klassische und schwache Lösungen.- 5.4.2 Approximation auf endlich-dimensionalem Teilraum.- 5.4.3 Lemma von Céa.- Anmerkungen.- Übungsaufgaben.- Anhänge.- A1 Finanz-Derivate und ihr Umfeld.- A2 Wichtiges aus Wahrscheinlichkeit und Statistik.- A3 Die Black-Scholes-Gleichung.- A4 Methoden der Numerik.- A6 Funktionenräume.- Literatur.

Produktinformationen

Titel: Einführung in die numerische Berechnung von Finanzderivaten
Untertitel: Computational Finance
Autor:
EAN: 9783662502990
Digitaler Kopierschutz: Wasserzeichen
Format: E-Book (pdf)
Hersteller: Springer Berlin
Genre: Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik
Anzahl Seiten: 248
Veröffentlichung: 23.08.2016
Auflage: 2. Aufl. 2017

Weitere Bände aus der Buchreihe "Springer-Lehrbuch"