Willkommen, schön sind Sie da!
Logo Ex Libris

Algebra

  • E-Book (pdf)
  • 464 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Dieses bewährte Lehrbuch ist aus einem Vorlesungszyklus für Studiengänge der Ingenieur- und Wirtschaftswissenschaften sowie der In... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 47.65
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Dieses bewährte Lehrbuch ist aus einem Vorlesungszyklus für Studiengänge der Ingenieur- und Wirtschaftswissenschaften sowie der Informatik heraus entstanden. Es schlägt eine Brücke zwischen der rein theoretischen Darstellung und der angwandten Mathematik; es zeichnet sich durch gute Lesbarkeit sowie leichte Verständlichkeit aus. Vollständig durchgerechnete Beispiele ergänzen das didaktische Konzept.
Damit eignet sich das Werk nicht nur zum Gebrauch neben Vorlesungen an Hochschulen und Fachhochschulen, sondern auch zum Selbststudium, insbesondere für Studienanfänger.
Nach einer kurzen Lieferlücke macht dieser Nachdruck das erfolgreiche Buch wieder verfügbar.

Inhalt
1. Grundlagen der Algebra.- 1.1 Mengen.- 1.1.1 Begriff und Beschreibung einer Menge.- 1.1.2 Beziehungen zwischen Mengen.- 1.1.3 Verknüpfungen von Mengen.- 1.2 Relationen.- 1.2.1 Begriff und Beschreibung von Relationen.- 1.2.2 Eigenschaften zweistelliger Relationen.- 1.2.3 Äquivalenzrelationen.- 1.2.4 Ordnungsrelationen.- 1.2.5 Verknüpfungen von Relationen.- 1.3 Abbildungen.- 1.3.1 Der Begriff der Abbildung.- 1.3.2 Wichtige Eigenschaften von Abbildungen.- 1.3.3 Verknüpfungen von Abbildungen.- 1.4 Graphen.- 1.4.1 Einführende Erklärungen.- 1.4.2 Zusammenhängende Graphen.- 1.4.3 Eine Anwendung: Algorithmische Ermittlung eines Minimalgerüstes.- 1.5 Strukturen.- 1.5.1 Verknüpfungen.- 1.5.2 Verknüpfungstreue Abbildungen.- 1.6 Gruppen.- 1.6.1 Axiome und einfache Eigenschaften.- 1.6.2 Permutationen.- 1.6.3 Untergruppen. Normalteiler. Faktorgruppen.- 1.7 Ringe und Körper.- 1.8 Boolesche Algebra.- 1.8.1 Bedeutung. Axiomatisierung.- 1.8.2 Boolesche Terme.- 1.8.3 Schaltalgebra.- 1.8.4 Aussagenalgebra.- 2. Lineare Algebra.- 2:1 Zur Bedeutung der linearen Algebra.- 2.2 Determinanten.- 2.2.1 Zweireihige Determinanten.- 2.2.2 Determinanten n-ter Ordnung.- 2.3 Vektoralgebra.- 2.3.1 Vektorbegriff. Gruppeneigenschaft. Vektorraum.- 2.3.2 Das skalare Produkt.- 2.3.3 Das vektorielle Produkt.- 2.3.4 Basisdarstellung von Vektoren.- 2.3.5 Mehrfache Produkte.- 2.4 Matrizenalgebra.- 2.4.1 Matrixbegriff. Matrixverknüpfungen.- 2.4.2 Matrixinversion. Transponierung.- 2.4.3 Orthogonalität. Komplexe Matrizen.- 2.5 Lineare Gleichungssysteme.- 2.5.1 Lineare Abhängigkeit. Rangbegriff.- 2.5.2 Homogene lineare Systeme.- 2.5.3 Inhomogene lineare Systeme.- 2.5.4 Lineare Ungleichungssysteme.- 3. Algebra komplexer Zahlen.- 3.1 Der komplexe Zahlenkörper.- 3.2 Die Normalform komplexer Zahlen.- 3.3 Gaußsche Zahlenebene. Betrag. Konjugierung.- 3.4 Die trigonometrische Form komplexer Zahlen.- 3.5 Die Exponentialform komplexer Zahlen.- 3.6 Potenzen, Wurzeln und Logarithmen im Komplexen.- 3.7 Graphische Ausführung der Grundrechenarten mit Zeigern.- 4. Fuzzy-Algebra.- 4.1 Fuzzy-Mengen.- 4.1.1 Motivation.- 4.1.2 Darstellung von Fuzzy-Mengen.- 4.1.3 Beziehungen zwischen Fuzzy-Mengen.- 4.1.4 Verknüpfungen von Fuzzy-Mengen.- 4.2 Fuzzy-Relationen.- 4.2.1 Begriff. Darstellungsformen.- 4.2.2 Fuzzy-Relations-Verknüpfungen.- 4.2.3 Eigenschaften binärer Fuzzy-Relationen.- 4.3 Fuzzy-Logik.- 4.3.1 Mehrwertige Logiken.- 4.3.2 Linguistische Variable.- 4.3.3 Der Fuzzylogik-Kalkül.- 5. Anhang: Lösungen der Aufgaben.

Produktinformationen

Titel: Algebra
Untertitel: Anwendungsorientierte Mathematik
Autor:
EAN: 9783642855269
Digitaler Kopierschutz: Wasserzeichen
Format: E-Book (pdf)
Hersteller: Springer Berlin
Genre: Allgemeines, Lexika
Anzahl Seiten: 464
Veröffentlichung: 08.03.2013
Auflage: 7. Aufl. 1992

Weitere Bände aus der Buchreihe "Springer-Lehrbuch"

Sie sind hier.