Willkommen, schön sind Sie da!
Logo Ex Libris

Maschinelles Lernen

  • E-Book (pdf)
  • 655 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Leseprobe
Das maschinelle Lernen ist zwangsläufi g eines der am schnellsten wachsenden Gebiete der Computerwissenschaft. Nicht nur die ... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 77.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Das maschinelle Lernen ist zwangsläufi g eines der am schnellsten wachsenden Gebiete der Computerwissenschaft. Nicht nur die zu verarbeitenden Datenmengen werden immer umfangreicher, sondern auch die Theorie, wie man sie verarbeiten und in Wissen verwandeln kann.

Maschinelles Lernen ist ein verständlich geschriebenes Lehrbuch, welches ein breites Spektrum an Themen aus verschiedenen Bereichen abdeckt, wie zum Beispiel Statistik, Mustererkennung, neuronale Netze, künstliche Intelligenz, Signalverarbeitung, Steuerung und Data Mining. Darüber hinaus beinhaltet das Buch auch Themen, die von einführenden Werken häufi g nicht behandelt werden. Unter anderem: Überwachtes Lernen; Bayessche Entscheidungstheorie; parametrische und nichtparametrische Statistik; multivariate Analysis; Hidden-Markow-Modelle; bestärkendes Lernen; Kernel-Maschinen; graphische Modelle; Bayes-Schätzung und statistischen Testmethoden. Da maschinelles Lernen eine immer größere Rolle für Studierende der Informatik spielt, geht die zweite Aufl age des Buches auf diese Veränderung ein und unterstützt gezielt Anfänger in diesem Gebiet, unter anderem durch Übungsaufgaben und zusätzlichen Beispieldatensätzen.

Prof. Dr. Ethem Alpaydin, Bogaziçi University, Istanbul.



Klappentext

Das maschinelle Lernen ist zwangsläufig eines der am schnellsten wachsenden Gebiete der Computerwissenschaft. Nicht nur die zu verarbeitenden Datenmengen werden immer umfangreicher, sondern auch die Theorie, wie man sie verarbeiten und in Wissen verwandeln kann.

"Maschinelles Lernen" ist ein verständlich geschriebenes Lehrbuch, welches ein breites Spektrum an Themen aus verschiedenen Bereichen abdeckt, wie zum Beispiel Statistik, Mustererkennung, neuronale Netze, künstliche Intelligenz, Signalverarbeitung, Steuerung und Data Mining. Darüber hinaus beinhaltet das Buch auch Themen, die von einführenden Werken häufig nicht behandelt werden. Unter anderem: Überwachtes Lernen; Bayessche Entscheidungstheorie; parametrische und nichtparametrische Statistik; multivariate Analysis; Hidden-Markow-Modelle; bestärkendes Lernen; Kernel-Maschinen; graphische Modelle; Bayes-Schätzung und statistische Testmethoden. Da maschinelles Lernen eine immer größere Rolle für Studierende der Informatik spielt, geht die zweite Aufl age des Buches auf diese Veränderung ein und unterstützt gezielt Anfänger in diesem Gebiet, unter anderem durch Übungsaufgaben und zusätzliche Beispieldatensätzen.

Prof. Dr. Ethem Alpaydin, Bogaziçi University, Istanbul.

Produktinformationen

Titel: Maschinelles Lernen
Autor:
EAN: 9783110617894
Digitaler Kopierschutz: frei
Format: E-Book (pdf)
Hersteller: Gruyter, Walter de GmbH
Genre: Informatik, EDV
Anzahl Seiten: 655
Veröffentlichung: 20.05.2019
Dateigrösse: 5.8 MB

Weitere Bände aus der Buchreihe "De Gruyter Studium"