Willkommen, schön sind Sie da!
Logo Ex Libris

Simulation und Herstellung siliziumbasierter integriert-optischer Sternkoppler

  • E-Book (pdf)
  • 86 Seiten
Inhaltsangabe:Einleitung: Die optische Nachrichtentechnik gewinnt in der Telekommunikation mit dem wachsenden Bedarf an hohen &Uum... Weiterlesen
E-Books ganz einfach mit der kostenlosen Ex Libris-Reader-App lesen. Hier erhalten Sie Ihren Download-Link.
CHF 39.90
Download steht sofort bereit
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.

Beschreibung

Inhaltsangabe:Einleitung: Die optische Nachrichtentechnik gewinnt in der Telekommunikation mit dem wachsenden Bedarf an hohen Übertragungsraten und der Globalisierung der Informationsverarbeitung an Bedeutung. Die Bauteile der integrierten Optik sind aufgrund ihrer Anwendungsmöglichkeiten innerhalb der optischen Nachrichtentechnik von großem Interesse, da bei Verteilungs- und Schaltfunktionen auf die Umwandlung in elektrische Signale verzichtet werden kann. Das im Rahmen dieser Diplomarbeit betrachtete Bauteil, der passive optische Sternkoppler, findet vorwiegend in lokalen Netzen seine Anwendung. Die hierbei verwendbaren Materialien müssen gewährleisten, dass die Lichtwellenleiter geringe Übertragungsverluste durch Dämpfung und Dispersion besitzen und reproduzierbar herzustellen sind. Die Möglichkeit der Kopplung an andere optische Komponenten wie Glasfasern, Lichtquellen und Photodetektoren ist ebenso wichtig. Diese Forderungen erfüllen verschiedene Substratmaterialien wie z. B. Glas, Polymere und nicht zuletzt Silizium. Die Herstellung des Sternkopplers auf Siliziumsubstrat hat verschiedene Vorteile. Standardsiliziumwafer besitzen eine qualitativ hochwertige Oberfläche und sind deshalb ein geeignetes Substrat für optische Wellenleiter. Die Siliziumtechnologie ist gut erforscht und zur Abscheidung und Strukturierung der Lichtwellenleiterschichten kann auf Verfahren der Halbleitertechnologie zurückgegriffen werden. Ein weiterer Vorteil ist das einfach herzustellende, arteigene Oxid des Siliziums mit guten optischen Eigenschaften. Aufgrund des großen finanziellen und zeitlichen Aufwandes ist es sinnvoll, vor der technologischen Realisierung eine simulatorische Opitimierung durchzuführen. Aus diesem Grund teilt sich diese Diplomarbeit zu etwa gleichen Teilen in einen simulatorischen und einen technologischen bzw. messtechnischen Teil auf. Ziel dieser Diplomarbeit ist es, einen integriert optischen Sternkoppler auf Siliziumsubstrat herzustellen, der unabhängig von der Wahl des Einkoppelwellenleiters die eingekoppelte Leistung gleichmäßig auf alle Ausgangswellenleiter verteilt. Inhaltsverzeichnis:Inhaltsverzeichnis: 1.Einleitung4 2.Der passive, optische Sternkoppler5 2.1Verwendungsmöglichkeiten von optischen Sternkopplern5 2.1.1Einsatz in sternartigen Netzen5 2.1.2Aufbau eines integriert-optischen 8x8-Sternkopplers6 2.1.3Einsatz in integriert-optischen Frequenzmultiplexern9 2.1.4Aufbau eines in Multiplexern verwendeten 8x20 [...]

Zusammenfassung
Inhaltsangabe:Einleitung:Die optische Nachrichtentechnik gewinnt in der Telekommunikation mit dem wachsenden Bedarf an hohen Übertragungsraten und der Globalisierung der Informationsverarbeitung an Bedeutung. Die Bauteile der integrierten Optik sind aufgrund ihrer Anwendungsmöglichkeiten innerhalb der optischen Nachrichtentechnik von großem Interesse, da bei Verteilungs- und Schaltfunktionen auf die Umwandlung in elektrische Signale verzichtet werden kann.Das im Rahmen dieser Diplomarbeit betrachtete Bauteil, der passive optische Sternkoppler, findet vorwiegend in lokalen Netzen seine Anwendung.Die hierbei verwendbaren Materialien müssen gewährleisten, dass die Lichtwellenleiter geringe Übertragungsverluste durch Dämpfung und Dispersion besitzen und reproduzierbar herzustellen sind. Die Möglichkeit der Kopplung an andere optische Komponenten wie Glasfasern, Lichtquellen und Photodetektoren ist ebenso wichtig. Diese Forderungen erfüllen verschiedene Substratmaterialien wie z. B. Glas, Polymere und nicht zuletzt Silizium.Die Herstellung des Sternkopplers auf Siliziumsubstrat hat verschiedene Vorteile. Standardsiliziumwafer besitzen eine qualitativ hochwertige Oberfläche und sind deshalb ein geeignetes Substrat für optische Wellenleiter. Die Siliziumtechnologie ist gut erforscht und zur Abscheidung und Strukturierung der Lichtwellenleiterschichten kann auf Verfahren der Halbleitertechnologie zurückgegriffen werden. Ein weiterer Vorteil ist das einfach herzustellende, arteigene Oxid des Siliziums mit guten optischen Eigenschaften.Aufgrund des großen finanziellen und zeitlichen Aufwandes ist es sinnvoll, vor der technologischen Realisierung eine simulatorische Opitimierung durchzuführen. Aus diesem Grund teilt sich diese Diplomarbeit zu etwa gleichen Teilen in einen simulatorischen und einen technologischen bzw. messtechnischen Teil auf.Ziel dieser Diplomarbeit ist es, einen integriert optischen Sternkoppler auf Siliziumsubstrat herzustellen, der unabhängig von der Wahl des Einkoppelwellenleiters die eingekoppelte Leistung gleichmäßig auf alle Ausgangswellenleiter verteilt.Inhaltsverzeichnis:Inhaltsverzeichnis:1.Einleitung42.Der passive, optische Sternkoppler52.1Verwendungsmöglichkeiten von optischen Sternkopplern52.1.1Einsatz in sternartigen Netzen52.1.2Aufbau eines integriert-optischen 8x8-Sternkopplers62.1.3Einsatz in integriert-optischen Frequenzmultiplexern92.1.4Aufbau eines in Multiplexern verwendeten 8x20 []

Produktinformationen

Titel: Simulation und Herstellung siliziumbasierter integriert-optischer Sternkoppler
Autor:
EAN: 9783832405991
ISBN: 978-3-8324-0599-1
Digitaler Kopierschutz: frei
Format: E-Book (pdf)
Herausgeber: Diplom.de
Genre: Elektronik, Elektrotechnik, Nachrichtentechnik
Anzahl Seiten: 86
Veröffentlichung: 06.01.1998
Jahr: 1998
Dateigrösse: 3.6 MB

Bewertungen

Gesamtübersicht

Meine Bewertung

Bewerten Sie diesen Artikel


Zuletzt angesehen
Verlauf löschen