Willkommen, schön sind Sie da!
Logo Ex Libris

Maschinelles Lernen

  • Fester Einband
  • 406 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Maschinelles Lernen ist ein interdisziplinäres Fach, das die Bereiche Informatik, Mathematik und das jeweilige Anwendungsgebiet zu... Weiterlesen
20%
50.90 CHF 40.70
Auslieferung erfolgt in der Regel innert 2 bis 4 Werktagen.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

Maschinelles Lernen ist ein interdisziplinäres Fach, das die Bereiche Informatik, Mathematik und das jeweilige Anwendungsgebiet zusammenführt. In diesem Buch werden alle drei Teilgebiete gleichermaßen berücksichtigt: - Es wird demonstriert, wie man die Algorithmen des maschinellen Lernens verwendet und der Hintergrund geliefert, um zu verstehen, wie und warum diese Algorithmen funktionieren. - Ebenfalls enthalten ist ein kompakter Kickstart zur Verwendung von Python 3 (in Python programmieren) und seinem Ökosystem im Umfeld des maschinellen Lernens. - Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. - Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen. - Es werden verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens besprochen, u.a. Random Forest, DBSCAN und Q-Learning. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt. Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis.

Autorentext

Prof. Dr. Jörg Frochte lehrt und forscht seit 2010 an der Hochschule Bochum. Als Professor für Angewandte Informatik und Mathematik hält er hier u.a. Vorlesungen in Mathematik, Simulation und Modellbildung sowie maschinellem Lernen.



Zusammenfassung
"Jörg Frochte, Professor an der Hochschule Bochum, steuert ein weiteres Buch zu ML bei, das sich für das Selbststudium eignen soll und zahlreiche ML-Aufgaben in Python erledigt." iX, Oktober 2019 "Maschinelles Lernen ist ein interdisziplinäres Fach, das Informatik, Mathematik und das jeweilige Anwendungsgebiet zusammenführt. In diesem Buch werden alle drei Teilgebiete gleichermaßen berücksichtigt. Es demonstriert, wie man die Algorithmen des maschinellen Lernens verwendet, und liefert den Hintergrund, um zu verstehen, wie und warum sie funktionieren." MaschinenMarkt, 25.03.2019 "Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis." Konstruktion - Zeitschrift für Produktentwicklung und Ingenieur-Werkstoffe, Februar 2019 "Fazit: Erfahrener Dozent führt aus verschiedenen technischen Blickwinkeln in das Thema ein. Fundiert." Infotechnica.de, 01.02.2019 "Dieses Lehrbuch ist nicht nur für Studierende technischer Studienrichtungen geeignet, sondern auch für Interessierte anderer Studienrichtungen, Praktiker und Quereinsteiger. Das Buch in zweiter Auflage bietet eine gute, leicht verständliche Einführung in die Grundprinzpiens des maschinellen Lernens unter Verwendung von Python, dem heutigen Industriestandard. Das schöne an diesem Buch ist dass es eben nicht ein reines 'Programmierlehrbuch' ist, sondern darüberhinaus auf verständliche Weise die Kernprinzipien des maschinellen Lernens vermittelt und zeigt, dass eben nicht nur das Verständnis von Algorithmen notwendig ist, sondern eine gute Datenlage und das entsprechende Domänenwissen." Andreas Holzinger, Austria Forum, Januar 2019 "Alles in allem ein anspruchsvolles Buch über maschinelles Lernen, das einem engagierten Leser fundiertes Wissen vermitteln kann." Linux Magazin, Oktober 2018

Leseprobe
- Einführung in maschinelles Lernen - Python, NumPy, SciPy und Matplotlib - in a nutshell - Statistische Grundlagen und Bayes-Klassifikator - Lineare Modelle und Lazy Learning - Entscheidungsbäume - Feedforward-Netze - Deep Neural Networks mit Keras - Feature-Reduktion - Support Vector Machines - Clustering-Verfahren - Bestärkendes Lernen

Produktinformationen

Titel: Maschinelles Lernen
Untertitel: Grundlagen und Algorithmen in Python
Autor:
EAN: 9783446459960
ISBN: 978-3-446-45996-0
Format: Fester Einband
Herausgeber: Hanser Fachbuch
Genre: Allgemeines & Lexika
Anzahl Seiten: 406
Gewicht: 761g
Größe: H242mm x B172mm x T25mm
Veröffentlichung: 14.01.2019
Jahr: 2019
Auflage: 2. Auflage
Land: DE