Willkommen, schön sind Sie da!
Logo Ex Libris

Differential Galois Theory and Lie-Vessiot Systems

  • Kartonierter Einband
  • 192 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
The purpose of this work is to develop a differential Galois theory for differential equations admitting superposition laws. First... Weiterlesen
20%
94.00 CHF 75.20
Print on demand - Exemplar wird für Sie besorgt.
Bestellung & Lieferung in eine Filiale möglich

Beschreibung

The purpose of this work is to develop a differential Galois theory for differential equations admitting superposition laws. First, we characterize those differential equations in terms of Lie group actions, generalizing some classical results due to S. Lie. We call them Lie-Vessiot systems. Then, we develop a differential Galois theory for Lie-Vessiot systems both in the complex analytic and algebraic contexts. In the complex analytic context we give a theory that generalizes the tannakian approach to the classical Picard-Vessiot theory. In the algebraic case, we study differential equations under the formalism of differential algebra. We prove that algebraic Lie-Vessiot systems are solvable in strongly normal extensions. Therefore, Lie-Vessiot systems are differential equations attached to the Kolchin''s differential Galois theory.

Autorentext

David Blázquez Sanz is a Spanish-American mathematician. He obtained his degree in Universidad de Salamanca and his doctorate in Universitat Politècnica de Catalunya, under the supervision of Juan J. Morales Ruiz. Nowadays he is professor in Sergio Arboleda University, in Bogotá, Colombia. He also studies and teaches chinese martial arts.

Produktinformationen

Titel: Differential Galois Theory and Lie-Vessiot Systems
Untertitel: Analytic and Algebraic Theory of Lie-Vessiot Systemsand Superposition Laws for Ordinary DifferentialEquations
Autor:
EAN: 9783639096019
ISBN: 978-3-639-09601-9
Format: Kartonierter Einband
Herausgeber: VDM Verlag Dr. Müller e.K.
Genre: Sonstiges
Anzahl Seiten: 192
Gewicht: 302g
Größe: H220mm x B150mm x T12mm
Jahr: 2013